Linear-response time-dependent density functional theory approach to warm dense matter with adiabatic exchange-correlation kernels

被引:19
作者
Moldabekov, Zhandos A. [1 ,2 ]
Pavanello, Michele [3 ,4 ]
Boehme, Maximilian P. [1 ,2 ,5 ]
Vorberger, Jan [2 ]
Dornheim, Tobias [1 ,2 ]
机构
[1] Ctr Adv Syst Understanding CASUS, D-02826 Gorlitz, Germany
[2] Helmholtz Zentrum Dresden Rossendorf HZDR, D-01328 Dresden, Germany
[3] Rutgers State Univ, Dept Chem, 73 Warren St, Newark, NJ 07102 USA
[4] Rutgers State Univ, Dept Phys, 101 Warren St, Newark, NJ 07102 USA
[5] Tech Univ Dresden, D-01062 Dresden, Germany
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 02期
基金
美国国家科学基金会;
关键词
LOCAL-FIELD FACTOR; DIELECTRIC-CONSTANT; STATIC RESPONSE; ELECTRON-GAS; PLASMAS; SCATTERING; SEMICONDUCTORS; APPROXIMATIONS; ACCURATE; MATRICES;
D O I
10.1103/PhysRevResearch.5.023089
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a methodology for the linear-response time-dependent density functional theory (LR-TDDFT) calculation of the dynamic density response function of warm dense matter in the adiabatic approximation that can be used with any available exchange-correlation (XC) functional across Jacob's ladder and across temperature regimes. The uniqueness of the presented approach is that it can go beyond the adiabatic local density approximation and adiabatic generalized gradient approximation while preserving the self-consistency between the Kohn-Sham (KS) response function and adiabatic XC kernel for extended systems. The key ingredient to the presented method is the combination of the adiabatic XC kernel from the direct perturbation approach with the macroscopic dynamic KS response from the standard LR-TDDFT method using KS orbitals. We demonstrate the application of the method for the example of warm dense hydrogen, for which we perform a detailed analysis of the KS density response function, the random phase approximation result, the total density response function, and of the adiabatic XC kernel. The analysis is performed using local density approximation, generalized gradient approximation, and meta-generalized gradient approximation level approximations for the XC effects. The presented method is directly applicable to disordered systems such as liquid metals, warm dense matter, and dense plasmas.
引用
收藏
页数:19
相关论文
共 119 条
  • [1] QUANTUM THEORY OF DIELECTRIC CONSTANT IN REAL SOLIDS
    ADLER, SL
    [J]. PHYSICAL REVIEW, 1962, 126 (02): : 413 - +
  • [2] Ab initio calculation of the exchange-correlation kernel in extended systems -: art. no. 165108
    Adragna, G
    Del Sole, R
    Marini, A
    [J]. PHYSICAL REVIEW B, 2003, 68 (16):
  • [3] Functional designed to include surface effects in self-consistent density functional theory
    Armiento, R
    Mattsson, AE
    [J]. PHYSICAL REVIEW B, 2005, 72 (08)
  • [4] X-ray Thomson Scattering in Warm Dense Matter without the Chihara Decomposition
    Baczewski, A. D.
    Shulenburger, L.
    Desjarlais, M. P.
    Hansen, S. B.
    Magyar, R. J.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 116 (11)
  • [5] An object-oriented scripting interface to a legacy electronic structure code
    Bahn, SR
    Jacobsen, KW
    [J]. COMPUTING IN SCIENCE & ENGINEERING, 2002, 4 (03) : 56 - 66
  • [6] A simple effective potential for exchange
    Becke, Axel D.
    Johnson, Erin R.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (22)
  • [7] Betti R, 2016, NAT PHYS, V12, P435, DOI [10.1038/NPHYS3736, 10.1038/nphys3736]
  • [8] IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS
    BLOCHL, PE
    JEPSEN, O
    ANDERSEN, OK
    [J]. PHYSICAL REVIEW B, 1994, 49 (23): : 16223 - 16233
  • [9] Ab initio path integral Monte Carlo simulations of hydrogen snapshots at warm dense matter conditions
    Boehme, Maximilian
    Moldabekov, Zhandos A.
    Vorberger, Jan
    Dornheim, Tobias
    [J]. PHYSICAL REVIEW E, 2023, 107 (01)
  • [10] Static Electronic Density Response of Warm Dense Hydrogen: Ab Initio Path Integral Monte Carlo Simulations
    Boehme, Maximilian
    Moldabekov, Zhandos A.
    Vorberger, Jan
    Dornheim, Tobias
    [J]. PHYSICAL REVIEW LETTERS, 2022, 129 (06)