A numerical algorithm for solving one-dimensional parabolic convection-diffusion equation

被引:2
|
作者
Koc, Dilara Altan [1 ]
Ozturk, Yalcin [2 ]
Gulsu, Mustafa [1 ]
机构
[1] Mugla Sitki Kocman Univ, Dept Math, Mugla, Turkiye
[2] Mugla Sitki Kocman Univ, Ula Vocat High Sch, Mugla, Turkiye
来源
JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE | 2023年 / 17卷 / 01期
关键词
Partial differential equation; 1D parabolic convection-diffusion equation; finite difference method; Von Neumann stability analysis; consistency; convergence; SCHEME;
D O I
10.1080/16583655.2023.2204808
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A numerical method for solving one-dimensional (1D) parabolic convection-diffusion equation is provided. We consider the finite difference formulas with five points to obtain a numerical method. The proposed method converts the given equation, domain, and time interval into a discrete form. The numerical values of the solution are approximated by solving algebraic equations containing finite differences and values at these discrete points. The consistency, stability and convergence are investigated. On the other hand, some numerical examples illustrate the validity and applicability of the method. Finally, the numerical results are compared with the finite difference scheme's three points.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Numerical solutions of singularly perturbed one-dimensional parabolic convection-diffusion problems by the Bessel collocation method
    Yuzbasi, Suayip
    Sahin, Niyazi
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 220 : 305 - 315
  • [2] A robust numerical algorithm on harmonic mesh for parabolic singularly perturbed convection-diffusion problems with time delay
    Babu, Gajendra
    Prithvi, M.
    Sharma, Kapil K.
    Ramesh, V. P.
    NUMERICAL ALGORITHMS, 2022, 91 (02) : 615 - 634
  • [3] ERROR ESTIMATES FOR THE AEDG METHOD TO ONE-DIMENSIONAL LINEAR CONVECTION-DIFFUSION EQUATIONS
    Liu, Hailiang
    Wen, Hairui
    MATHEMATICS OF COMPUTATION, 2018, 87 (309) : 123 - 148
  • [4] A Fitted Numerical Method for Interior-Layer Parabolic Convection-Diffusion Problems
    Mbayi, Charles K.
    Munyakazi, Justin B.
    Patidar, Kailash C.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2022, 19 (10)
  • [5] A comparative study of numerical schemes for convection-diffusion equation
    Aswin, V. S.
    Awasthi, Ashish
    Anu, C.
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL HEAT AND MASS TRANSFER (ICCHMT) - 2015, 2015, 127 : 621 - 627
  • [6] Sinc-Galerkin method for solving the time fractional convection-diffusion equation with variable coefficients
    Chen, Li Juan
    Li, MingZhu
    Xu, Qiang
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [7] A Comparative Numerical Study of Parabolic Partial Integro-Differential Equation Arising from Convection-Diffusion
    Khan, Kamil
    Ali, Arshed
    Fazal-i-Haq
    Hussain, Iltaf
    Amir, Nudrat
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 126 (02): : 673 - 692
  • [8] An approximation scheme for the time fractional convection-diffusion equation
    Zhang, Juan
    Zhang, Xindong
    Yang, Bohui
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 335 : 305 - 312
  • [9] A parameter uniform numerical method on a Bakhvalov type mesh for singularly perturbed degenerate parabolic convection-diffusion problems
    Kumar, Shashikant
    Kumar, Sunil
    Ramos, Higinio
    Kuldeep
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (06) : 5645 - 5668
  • [10] APPLICATION OF A NUMERICAL-ANALYTICAL METHOD FOR SOLVING A ONE-DIMENSIONAL WAVE EQUATION
    Mondrus, Vladimir
    Sizov, Dmitri
    AKUSTIKA, 2021, 39 : 24 - 28