Learning-Based MIMO Channel Estimation Under Practical Pilot Sparsity and Feedback Compression

被引:13
作者
del Rosario, Mason [1 ]
Ding, Zhi [1 ]
机构
[1] Univ Calif Davis, Dept Elect & Comp Engn, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
Estimation; Downlink; Delays; Time-frequency analysis; Wireless communication; OFDM; Antennas; Massive MIMO; deep learning CSI; efficient feedback; CSI estimation; CSI FEEDBACK; RECIPROCITY;
D O I
10.1109/TWC.2022.3202750
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Wireless links using massive MIMO transceivers are vital for next generation wireless communications networks. Precoding in Massive MIMO transmission requires accurate downlink channel state information (CSI). Many recent works have effectively applied deep learning (DL) to jointly train UE-side compression networks for delay domain CSI and a BS-side decoding scheme. Vitally, these works assume that the full delay domain CSI is available at the UE, but in reality, the UE must estimate the delay domain based on a limited number of frequency domain pilots. In this work, we propose a linear pilot-to-delay estimator (P2DE) that acquires the truncated delay CSI via sparse frequency pilots. We show the accuracy of the P2DE under frequency downsampling, and we demonstrate the P2DE's efficacy when utilized with existing CSI estimation networks. Additionally, we propose to use trainable compressed sensing (CS) networks in a differential encoding network for time-varying CSI estimation, and we propose a new network, MarkovNet-ISTA-ENet (MN-IE), which combines a CS network for initial CSI estimation and multiple autoencoders to estimate the error terms. We demonstrate that MN-IE has better asymptotic performance than networks comprised of only one type of network.
引用
收藏
页码:1161 / 1174
页数:14
相关论文
共 24 条
[1]  
Asplund H., 2020, ADV ANTENNA SYSTEMS, P301
[2]   Deep CNN-Based Channel Estimation for mmWave Massive MIMO Systems [J].
Dong, Peihao ;
Zhang, Hua ;
Li, Geoffrey Ye ;
Gaspar, Ivan Simoes ;
NaderiAlizadeh, Navid .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2019, 13 (05) :989-1000
[3]  
Evolved Universal Terrestrial Radio Access (E-UTRA), 2022, 36211 EUTRA 3GPP TS
[4]  
Gao Q., 2010, 2010 5 INT ICST C CO, P1
[5]   Capacity limits of MIMO channels [J].
Goldsmith, A ;
Jafar, SA ;
Jindal, N ;
Vishwanath, S .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2003, 21 (05) :684-702
[6]   CAnet: Uplink-Aided Downlink Channel Acquisition in FDD Massive MIMO Using Deep Learning [J].
Guo, Jiajia ;
Wen, Chao-Kai ;
Jin, Shi .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (01) :199-214
[7]   CSI Feedback With Model-Driven Deep Learning of Massive MIMO Systems [J].
Guo, Jianhua ;
Wang, Lei ;
Li, Feng ;
Xue, Jiang .
IEEE COMMUNICATIONS LETTERS, 2022, 26 (03) :547-551
[8]  
Hussien M, 2022, Arxiv, DOI arXiv:2011.04178
[9]  
Kaltenberger F., 2010, P C FUT NETW MOB SUM, P1
[10]   THE COST 2100 MIMO CHANNEL MODEL [J].
Liu, Lingfeng ;
Oestges, Claude ;
Poutanen, Juho ;
Haneda, Katsuyuki ;
Vainikainen, Pertti ;
Quitin, Francois ;
Tufvesson, Fredrik ;
De Doncker, Philippe .
IEEE WIRELESS COMMUNICATIONS, 2012, 19 (06) :92-99