Blood pressure stratification using photoplethysmography and light gradient boosting machine

被引:22
作者
Hu, Xudong [1 ]
Yin, Shimin [1 ]
Zhang, Xizhuang [2 ]
Menon, Carlo [3 ]
Fang, Cheng [1 ]
Chen, Zhencheng [1 ,4 ,5 ]
Elgendi, Mohamed [3 ]
Liang, Yongbo [1 ,4 ,5 ]
机构
[1] Guilin Univ Elect Technol, Sch Life & Environm Sci, Guilin, Peoples R China
[2] Guilin Univ Elect Technol, Sch Elect Engn & Automat, Guilin, Peoples R China
[3] Swiss Fed Inst Technol, Biomed & Mobile Hlth Technol Lab, Zurich, Switzerland
[4] Guangxi Coll & Univ, Key Lab Biomed Sensors & Intelligent Instruments, Guilin, Peoples R China
[5] Guangxi Engn Technol Res Ctr Human Physiol Informa, Guilin, Peoples R China
基金
中国国家自然科学基金;
关键词
blood pressure monitoring; photoplethysmography; machine learning; Optuna-tuned LightGBM; hypertension evaluation; wearable devices;
D O I
10.3389/fphys.2023.1072273
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Introduction: Globally, hypertension (HT) is a substantial risk factor for cardiovascular disease and mortality; hence, rapid identification and treatment of HT is crucial. In this study, we tested the light gradient boosting machine (LightGBM) machine learning method for blood pressure stratification based on photoplethysmography (PPG), which is used in most wearable devices. Methods: We used 121 records of PPG and arterial blood pressure (ABP) signals from the Medical Information Mart for Intensive Care III public database. PPG, velocity plethysmography, and acceleration plethysmography were used to estimate blood pressure; the ABP signals were used to determine the blood pressure stratification categories. Seven feature sets were established and used to train the Optuna-tuned LightGBM model. Three trials compared normotension (NT) vs. prehypertension (PHT), NT vs. HT, and NT + PHT vs. HT. Results: The F1 scores for these three classification trials were 90.18%, 97.51%, and 92.77%, respectively. The results showed that combining multiple features from PPG and its derivative led to a more accurate classification of HT classes than using features from only the PPG signal. Discussion: The proposed method showed high accuracy in stratifying HT risks, providing a noninvasive, rapid, and robust method for the early detection of HT, with promising applications in the field of wearable cuffless blood pressure measurement.
引用
收藏
页数:11
相关论文
共 45 条
[1]   Optuna: A Next-generation Hyperparameter Optimization Framework [J].
Akiba, Takuya ;
Sano, Shotaro ;
Yanase, Toshihiko ;
Ohta, Takeru ;
Koyama, Masanori .
KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, :2623-2631
[2]   Hypertension Pharmacological Treatment in Adults: A World Health Organization Guideline Executive Summary [J].
Al-Makki, Akram ;
DiPette, Donald ;
Whelton, Paul K. ;
Murad, M. Hassan ;
Mustafa, Reem A. ;
Acharya, Shrish ;
Beheiry, Hind Mamoun ;
Champagne, Beatriz ;
Connell, Kenneth ;
Cooney, Marie Therese ;
Ezeigwe, Nnenna ;
Gaziano, Thomas Andrew ;
Gidio, Agaba ;
Lopez-Jaramillo, Patricio ;
Khan, Unab I. ;
Kumarapeli, Vindya ;
Moran, Andrew E. ;
Silwimba, Margaret Mswema ;
Rayner, Brian ;
Sukonthasan, Apichard ;
Yu, Jing ;
Saraffzadegan, Nizal ;
Reddy, K. Srinath ;
Khan, Taskeen .
HYPERTENSION, 2022, 79 (01) :293-301
[3]  
Bergstra J., 2013, INT C MACHINE LEARNI, P115
[4]   Tradeoffs using Binary and Multiclass Neural Network Classification for Medical Multidisease Detection [J].
Berstad, Tor Jan Derek ;
Riegler, Michael Alexander ;
Espeland, Havard ;
de Lange, Thomas ;
Smedsrud, Pia Helen ;
Pogorelov, Konstantin ;
Stensland, Hakon Kvale ;
Halvorsen, Pal .
2018 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM 2018), 2018, :1-8
[5]  
Biau G, 2012, J MACH LEARN RES, V13, P1063
[6]   Multi-Site Photoplethysmography Technology for Blood Pressure Assessment: Challenges and Recommendations [J].
Chan, Gabriel ;
Cooper, Rachel ;
Hosanee, Manish ;
Welykholowa, Kaylie ;
Kyriacou, Panayiotis A. ;
Zheng, Dingchang ;
Allen, John ;
Abbott, Derek ;
Lovell, Nigel H. ;
Fletcher, Richard ;
Elgendi, Mohamed .
JOURNAL OF CLINICAL MEDICINE, 2019, 8 (11)
[7]   Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure [J].
Chobanian, AV ;
Bakris, GL ;
Black, HR ;
Cushman, WC ;
Green, LA ;
Izzo, JL ;
Jones, DW ;
Materson, BJ ;
Oparil, S ;
Wright, JT ;
Roccella, EJ .
HYPERTENSION, 2003, 42 (06) :1206-1252
[8]   Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh - A Python']Python package) [J].
Christ, Maximilian ;
Braun, Nils ;
Neuffer, Julius ;
Kempa-Liehr, Andreas W. .
NEUROCOMPUTING, 2018, 307 :72-77
[9]   Pulse Transit Time Based Continuous Cuffless Blood Pressure Estimation: A New Extension and A Comprehensive Evaluation [J].
Ding, Xiaorong ;
Yan, Bryan P. ;
Zhang, Yuan-Ting ;
Liu, Jing ;
Zhao, Ni ;
Tsang, Hon Ki .
SCIENTIFIC REPORTS, 2017, 7
[10]   Identifying sarcopenia in advanced non-small cell lung cancer patients using skeletal muscleCTradiomics and machine learning [J].
Dong, Xing ;
Dan, Xu ;
Ao Yawen ;
Xu Haibo ;
Huan, Li ;
Tu Mengqi ;
Chen Linglong ;
Zhao, Ruan .
THORACIC CANCER, 2020, 11 (09) :2650-2659