Two-dimensional anisotropic vortex-bright soliton and its dynamics in dipolar Bose-Einstein condensates in optical lattice

被引:2
作者
Tan, Zhi [1 ,2 ]
Gong, Huilin [1 ,2 ]
Zhu, Bo [2 ]
Zhong, Honghua [1 ,2 ]
Hu, Shufang [2 ]
机构
[1] Cent South Univ Forestry & Technol, Sch Life Sci & technol, Changsha 410004, Peoples R China
[2] Cent South Univ Forestry & Technol, Inst Math & Phys, Changsha 410004, Peoples R China
基金
中国国家自然科学基金;
关键词
Vortex-bright soliton; Dipolar Bose-Einstein condensates; Optical lattice; VORTICES; PHYSICS; DARK;
D O I
10.1007/s11071-023-08335-8
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We study construction and dynamics of two-dimensional (2D) anisotropic vortex-bright (VB) soliton in spinor dipolar Bose-Einstein condensates confined in a 2D optical lattice (OL), with two localized components linearly mixed by the spin-orbit coupling and long-range dipole-dipole interaction (DDI). It is found that the OL and DDI can support stable anisotropic VB soliton in the present setting for arbitrarily small value of norm N. We then present a new method via examining the mean square error of norm share of bright component to implement stability analysis. It is revealed that one can control the stability of anisotropic VB soliton only by adjusting OL depth for a fixed DDI. In addition, the dynamics of the anisotropic VB soliton was studied by applying the kick to them. The mobility of the single kicked VB soliton is Rabbi-like oscillation. However, for the collision dynamics of two kicked anisotropic VB solitons, their properties mainly depend on their initial distance and OL, and they can realize the transition from the bright component to the vortex component. Our work may provide a convenient way to prepare and manipulate anisotropic VB soliton in high-dimensional space.
引用
收藏
页码:9467 / 9476
页数:10
相关论文
共 61 条
  • [1] Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms
    Aidelsburger, M.
    Lohse, M.
    Schweizer, C.
    Atala, M.
    Barreiro, J. T.
    Nascimbene, S.
    Cooper, N. R.
    Bloch, I.
    Goldman, N.
    [J]. NATURE PHYSICS, 2015, 11 (02) : 162 - 166
  • [2] Oscillations and interactions of dark and dark-bright solitons in Bose-Einstein condensates
    Becker, Christoph
    Stellmer, Simon
    Soltan-Panahi, Parvis
    Doerscher, Soeren
    Baumert, Mathis
    Richter, Eva-Maria
    Kronjaeger, Jochen
    Bongs, Kai
    Sengstock, Klaus
    [J]. NATURE PHYSICS, 2008, 4 (06) : 496 - 501
  • [3] Wave collapse in physics: principles and applications to light and plasma waves
    Berge, L
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 303 (5-6): : 259 - 370
  • [4] Many-body physics with ultracold gases
    Bloch, Immanuel
    Dalibard, Jean
    Zwerger, Wilhelm
    [J]. REVIEWS OF MODERN PHYSICS, 2008, 80 (03) : 885 - 964
  • [5] Algebraic bright and vortex solitons in defocusing media
    Borovkova, Olga V.
    Kartashov, Yaroslav V.
    Malomed, Boris A.
    Torner, Lluis
    [J]. OPTICS LETTERS, 2011, 36 (16) : 3088 - 3090
  • [6] Hidden vorticity in binary Bose-Einstein condensates
    Brtka, Marijana
    Gammal, Arnaldo
    Malomed, Boris A.
    [J]. PHYSICAL REVIEW A, 2010, 82 (05):
  • [7] Vortices and ring solitons in Bose-Einstein condensates
    Carr, L. D.
    Clark, Charles W.
    [J]. PHYSICAL REVIEW A, 2006, 74 (04):
  • [8] Vortices in attractive Bose-Einstein condensates in two dimensions
    Carr, L. D.
    Clark, Charles W.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (01)
  • [9] Chatterjee B., 2022, ARXIV
  • [10] Vortex solitons of the (3+1)-dimensional spatially modulated cubic-quintic nonlinear Schrodinger equation with the transverse modulation
    Chen, Rui-Pin
    Dai, Chao-Qing
    [J]. NONLINEAR DYNAMICS, 2017, 90 (03) : 1563 - 1570