Exploring Helical Peptides and Foldamers for the Design of Metal Helix Frameworks: Current Trends and Future Perspectives

被引:17
作者
Bajpayee, Nikhil [1 ,2 ]
Vijayakanth, Thangavel [3 ]
Rencus-Lazar, Sigal [3 ]
Dasgupta, Sneha [1 ,2 ]
Desai, Aamod V. [4 ]
Jain, Rahul [1 ,2 ]
Gazit, Ehud [3 ]
Misra, Rajkumar [1 ,2 ]
机构
[1] Natl Inst Pharmaceut Educ & Res NIPER, Dept Med Chem, Mohali 160062, India
[2] Tel Aviv Univ, Dept Mat Sci & Engn, IL-6997801 Tel Aviv, Israel
[3] Tel Aviv Univ, George S Wise Fac Life Sci, Shmunis Sch Biomed & Canc Res, IL-6997801 Tel Aviv, Israel
[4] Univ St Andrews, Sch Chem, St Andrews KY16, Scotland
基金
欧洲研究理事会;
关键词
Biocompatibility; Foldamers; Helical Peptides; Metal-Helix Frameworks; Porous Structures; ORGANIC FRAMEWORKS; BETA-PEPTIDES; POROUS MATERIALS; BUILDING-BLOCKS; PROTEIN; COORDINATION; GAMMA; BIOMATERIALS; RECOGNITION; STABILITY;
D O I
10.1002/anie.202214583
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Flexible and biocompatible metal peptide frameworks (MPFs) derived from short and ultra-short peptides have been explored for the storage of greenhouse gases, molecular recognition, and chiral transformations. In addition to short flexible peptides, peptides with specifically folded conformations have recently been utilized to fabricate a variety of metal helix frameworks (MHFs). The secondary structures of the peptides govern the structure-assembly relationship and thereby control the formation of three-dimensional (3D)-MHFs. Particularly, the hierarchical structural organization of peptide-based MHFs has not yet been discussed in detail. Here, we describe the recent progress of metal-driven folded peptide assembly to construct 3D porous structures for use in future energy storage, chiral recognition, and biomedical applications, which could be envisioned as an alternative to the conventional metal-organic frameworks (MOFs).
引用
收藏
页数:12
相关论文
共 105 条
  • [31] Nanostructured metal-organic frameworks and their bio-related applications
    Gimenez-Marques, M.
    Hidalgo, T.
    Serre, C.
    Horcajada, P.
    [J]. COORDINATION CHEMISTRY REVIEWS, 2016, 307 : 342 - 360
  • [32] Foldamers as versatile frameworks for the design and evolution of function
    Goodman, Catherine M.
    Choi, Sungwook
    Shandler, Scott
    DeGrado, William F.
    [J]. NATURE CHEMICAL BIOLOGY, 2007, 3 (05) : 252 - 262
  • [33] Geometrically Precise Building Blocks: the Self-Assembly of β-Peptides
    Gopalan, Romila D.
    Del Borgo, Mark P.
    Mechler, Adam I.
    Perlmutter, Patrick
    Aguilar, Marie-Isabel
    [J]. CHEMISTRY & BIOLOGY, 2015, 22 (11): : 1417 - 1423
  • [34] Synthetic foldamers
    Guichard, Gilles
    Huc, Ivan
    [J]. CHEMICAL COMMUNICATIONS, 2011, 47 (21) : 5933 - 5941
  • [35] Self-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery
    Habibi, Neda
    Kamaly, Nazila
    Memic, Adnan
    Shafiee, Hadi
    [J]. NANO TODAY, 2016, 11 (01) : 41 - 60
  • [36] Cation-induced chirality in a bifunctional metal-organic framework for quantitative enantioselective recognition
    Han, Zongsu
    Wang, Kunyu
    Guo, Yifan
    Chen, Wenjie
    Zhang, Jiale
    Zhang, Xinran
    Siligardi, Giuliano
    Yang, Sihai
    Zhou, Zhen
    Sun, Pingchuan
    Shi, Wei
    Cheng, Peng
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [37] Design of secondary structures in unnatural peptides:: Stable helical γ-tetra-, hexa-, and octapeptides and consequences of α-substitution
    Hanessian, S
    Luo, XH
    Schaum, R
    Michnick, S
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (33) : 8569 - 8570
  • [38] Designer self-assembling peptide nanofiber biological materials
    Hauser, Charlotte A. E.
    Zhang, Shuguang
    [J]. CHEMICAL SOCIETY REVIEWS, 2010, 39 (08) : 2780 - 2790
  • [39] Hecht S., 2007, Foldamers: Structure, Properties and Applications
  • [40] Structural and functional aspects of metal sites in biology
    Holm, RH
    Kennepohl, P
    Solomon, EI
    [J]. CHEMICAL REVIEWS, 1996, 96 (07) : 2239 - 2314