Hybrid treatment verification based on prompt gamma rays and fast neutrons: multivariate modelling for proton range determination

被引:2
作者
Schellhammer, Sonja M. [1 ,2 ,3 ,4 ]
Meric, Ilker [5 ]
Loeck, Steffen [1 ,2 ,6 ,7 ,8 ,9 ]
Koegler, Toni [1 ,2 ,3 ]
机构
[1] Tech Univ Dresden, Helmholtz Zentrum Dresden Rossendorf, Fac Med, OncoRay Natl Ctr Radiat Res Oncol, Dresden, Germany
[2] Tech Univ Dresden, Helmholtz Zentrum Dresden Rossendorf, Univ Hosp Carl Gustav Carus, Dresden, Germany
[3] Helmholtz Zentrum Dresden Rossendorf, Inst Radiooncol OncoRay, Dresden, Germany
[4] Zittau Gorlitz Univ Appl Sci, Fac Nat & Environm Sci, Zittau, Germany
[5] Western Norway Univ Appl Sci, Dept Comp Sci Elect Engn & Math Sci, Bergen, Norway
[6] German Canc Consortium DKTK, Partner Site Dresden, Heidelberg, Germany
[7] German Canc Res Ctr, Heidelberg, Germany
[8] Tech Univ Dresden, Fac Med, Dept Radiotherapy & Radiat Oncol, Dresden, Germany
[9] Tech Univ Dresden, Univ Hosp Carl Gustav Carus, Dresden, Germany
来源
FRONTIERS IN PHYSICS | 2023年 / 11卷
关键词
proton therapy; treatment verification; prompt gamma ray; fast neutron; machine learning; multivariate modelling; SLIT-CAMERA; SENSITIVITY;
D O I
10.3389/fphy.2023.1295157
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Robust and fast in vivo treatment verification is expected to increase the clinical efficacy of proton therapy. The combined detection of prompt gamma rays and neutrons has recently been proposed for this purpose and shown to increase the monitoring accuracy. However, the potential of this technique is not fully exploited yet since the proton range reconstruction relies only on a simple landmark of the particle production distributions. Here, we apply machine learning based feature selection and multivariate modelling to improve the range reconstruction accuracy of the system in an exemplary lung cancer case in silico. We show that the mean reconstruction error of this technique is reduced by 30%-50% to a root mean squared error per spot of 0.4, 1.0, and 1.9 mm for pencil beam scanning spot intensities of 108, 107, and 106 initial protons, respectively. The best model performance is reached when combining distribution features of both gamma rays and neutrons. This confirms the advantage of hybrid gamma/neutron imaging over a single-particle approach in the presented setup and increases the potential of this system to be applied clinically for proton therapy treatment verification.
引用
收藏
页数:7
相关论文
共 14 条
  • [1] First-In-Human Validation of CT-Based Proton Range Prediction Using Prompt Gamma Imaging in Prostate Cancer Treatments
    Berthold, Jonathan
    Khamfongkhruea, Chirasak
    Petzoldt, Johannes
    Thiele, Julia
    Hoelscher, Tobias
    Wohlfahrt, Patrick
    Peters, Nils
    Jost, Angelina
    Hofmann, Christian
    Janssens, Guillaume
    Smeets, Julien
    Richter, Christian
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2021, 111 (04): : 1033 - 1043
  • [2] 1977 RIETZ LECTURE - BOOTSTRAP METHODS - ANOTHER LOOK AT THE JACKKNIFE
    EFRON, B
    [J]. ANNALS OF STATISTICS, 1979, 7 (01) : 1 - 26
  • [3] Engelsman M., 2011, Proton therapy physics, DOI [10.1201/b11448-15, DOI 10.1201/B11448-15]
  • [4] A full-scale clinical prototype for proton range verification using prompt gamma-ray spectroscopy
    Hueso-Gonzalez, Fernando
    Rabe, Moritz
    Ruggieri, Thomas A.
    Bortfeld, Thomas
    Verburg, Joost M.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (18)
  • [5] GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy
    Jan, S.
    Benoit, D.
    Becheva, E.
    Carlier, T.
    Cassol, F.
    Descourt, P.
    Frisson, T.
    Grevillot, L.
    Guigues, L.
    Maigne, L.
    Morel, C.
    Perrot, Y.
    Rehfeld, N.
    Sarrut, D.
    Schaart, D. R.
    Stute, S.
    Pietrzyk, U.
    Visvikis, D.
    Zahra, N.
    Buvat, I.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (04) : 881 - 901
  • [6] Jinzhong Y., 2017, Data from Lung CT segmentation challenge
  • [7] Kuhn M., 2013, Applied Predictive Modeling, P173, DOI 10.1007/978-1-4614-6849-3
  • [8] Intensity modulated proton therapy and its sensitivity to treatment uncertainties 2: the potential effects of inter-fraction and inter-field motions
    Lomax, A. J.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2008, 53 (04) : 1043 - 1056
  • [9] A hybrid multi-particle approach to range assessment-based treatment verification in particle therapy
    Meric, Ilker
    Alagoz, Enver B.
    Hysing, Liv
    Koegler, Toni
    Lathouwers, Danny
    Lionheart, William R. B.
    Mattingly, John
    Obhodas, Jasmina
    Pausch, Guntram
    Pettersen, Helge E. S. N.
    Ratliff, Hunter
    Rovituso, Marta M.
    Schellhammer, Sonja M.
    Setterdahl, Lena
    Skjerdal, Kyrre
    Sterpin, Edmond
    Sudac, Davorin A.
    Turko, Joseph S.
    Ytre-Hauge, Kristian
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [10] Sensitivity of a prompt-gamma slit-camera to detect range shifts for proton treatment verification
    Nenoff, Lena
    Priegnitz, Marlen
    Janssens, Guillaume
    Petzoldt, Johannes
    Wohlfahrt, Patrick
    Trezza, Anna
    Smeets, Julien
    Pausch, Guntram
    Richter, Christian
    [J]. RADIOTHERAPY AND ONCOLOGY, 2017, 125 (03) : 534 - 540