Spatom: a graph neural network for structure-based protein-protein interaction site prediction

被引:11
作者
Wu, Haonan [1 ]
Han, Jiyun [1 ]
Zhang, Shizhuo [1 ]
Xin, Gaojia [1 ]
Mou, Chaozhou [1 ]
Liu, Juntao [1 ]
机构
[1] Shandong Univ, Sch Math & Stat, Weihai, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
protein-protein interaction; weighted digraph convolution; improved graph attention; continuous region; SECONDARY STRUCTURE; BETA-LACTAMASES; BINDING; RESIDUES; INHIBITORS; FINGERPRINTS; INTERFACE; SEQUENCE;
D O I
10.1093/bib/bbad345
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Accurate identification of protein-protein interaction (PPI) sites remains a computational challenge. We propose Spatom, a novel framework for PPI site prediction. This framework first defines a weighted digraph for a protein structure to precisely characterize the spatial contacts of residues, then performs a weighted digraph convolution to aggregate both spatial local and global information and finally adds an improved graph attention layer to drive the predicted sites to form more continuous region(s). Spatom was tested on a diverse set of challenging protein-protein complexes and demonstrated the best performance among all the compared methods. Furthermore, when tested on multiple popular proteins in a case study, Spatom clearly identifies the interaction interfaces and captures the majority of hotspots. Spatom is expected to contribute to the understanding of protein interactions and drug designs targeting protein binding.
引用
收藏
页数:11
相关论文
共 40 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   Small-molecule inhibitors of protein-protein interactions: Progressing towards the dream [J].
Arkin, MR ;
Wells, JA .
NATURE REVIEWS DRUG DISCOVERY, 2004, 3 (04) :301-317
[3]   NATURAL PROTEIN PROTEINASE-INHIBITORS AND THEIR INTERACTION WITH PROTEINASES [J].
BODE, W ;
HUBER, R .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1992, 204 (02) :433-451
[4]  
Chen Ming, 2020, P MACHINE LEARNING R, V119
[5]   Progress and challenges in predicting protein interfaces [J].
Esmaielbeiki, Reyhaneh ;
Krawczyk, Konrad ;
Knapp, Bernhard ;
Nebel, Jean-Christophe ;
Deane, Charlotte M. .
BRIEFINGS IN BIOINFORMATICS, 2016, 17 (01) :117-131
[6]   Role of β-lactamase residues in a common interface for binding the structurally unrelated inhibitory proteins BLIP and BLIP-II [J].
Fryszczyn, Bartlomiej G. ;
Adamski, Carolyn J. ;
Brown, Nicholas G. ;
Rice, Kacie ;
Huang, Wanzhi ;
Palzkill, Timothy .
PROTEIN SCIENCE, 2014, 23 (09) :1235-1246
[7]   Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning [J].
Gainza, P. ;
Sverrisson, F. ;
Monti, F. ;
Rodola, E. ;
Boscaini, D. ;
Bronstein, M. M. ;
Correia, B. E. .
NATURE METHODS, 2020, 17 (02) :184-+
[8]   Secondary structure based analysis and classification of biological interfaces: identification of binding motifs in protein-protein interactions [J].
Guharoy, Mainak ;
Chakrabarti, Pinak .
BIOINFORMATICS, 2007, 23 (15) :1909-1918
[9]   From molecular to modular cell biology [J].
Hartwell, LH ;
Hopfield, JJ ;
Leibler, S ;
Murray, AW .
NATURE, 1999, 402 (6761) :C47-C52
[10]   Analysis of protein-protein interaction sites using surface patches [J].
Jones, S ;
Thornton, JM .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 272 (01) :121-132