Microstructure of tungsten coatings effect on deuterium plasma-driven permeation through RAFM steel

被引:3
作者
Yang, Kai [1 ]
Xu, Yue [1 ,2 ,3 ]
Tian, Xiao-Ping [1 ]
Luo, Lai-Ma [1 ,2 ,3 ]
Ni, Jun-Jie [4 ]
Wu, Yu-Cheng [1 ,2 ,3 ]
机构
[1] Hefei Univ Technol, Sch Mat Sci & Engn, Hefei 230009, Peoples R China
[2] Natl Local Joint Engn Res Ctr Nonferrous Met & Pro, Hefei 230009, Peoples R China
[3] Copper Alloy & Forming Engn Res Ctr Minist Educ, Hefei 230009, Peoples R China
[4] Liaocheng Univ, Sch Mat Sci & Engn, Liaocheng 252000, Peoples R China
基金
中国国家自然科学基金;
关键词
Tungsten coating; RAFM steel; Plasma -driven permeation; Hydrogen isotope; TRITIUM PERMEATION; HYDROGEN; RETENTION; TRANSPORT; BEHAVIOR;
D O I
10.1016/j.nme.2023.101557
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Tungsten (W) coatings with different morphologies were deposited on CLF-1 steel by changing the sputtering time and discharge power using the magnetron sputtering method. Deuterium (D) plasma-driven permeation (PDP) experiments through W-coated CLF-1 were then carried out in the temperature range of 583-833 K. The obtained results showed that dense W coatings reduced steady-state permeation flux and prolonged the time of permeation flux reaching steady-state. Due to the existence of high-density intrinsic defects, D effective diffusivities of the coating are lower than that of bulk W. The increase of coating thickness reduced permeation flux. In addition, by changing the bias voltage and studying the influence of incident ion energy on D-PDP, it is found that the introduction of W coating affected the overall D transport by re-balancing the bulk diffusion and surface recombination processes. The thickness and microstructure of W coatings played a key role in determining the D steady-state permeation flux at varying temperatures.
引用
收藏
页数:8
相关论文
共 44 条
[1]   Hydrogen isotopes permeability in Eurofer 97 martensitic steel [J].
Aiello, A ;
Ricapito, I ;
Benamati, G ;
Valentini, R .
FUSION SCIENCE AND TECHNOLOGY, 2002, 41 (03) :872-876
[2]   Status of reduced activation ferritic/martensitic steel development [J].
Baluc, N. ;
Gelles, D. S. ;
Jitsukawa, S. ;
Kimura, A. ;
Klueh, R. L. ;
Odette, G. R. ;
van der Schaaf, B. ;
Yu, Jinnan .
JOURNAL OF NUCLEAR MATERIALS, 2007, 367 (SPEC. ISS.) :33-41
[3]   Deuterium transport in ITER-grade tungsten [J].
Byeon, W. J. ;
Noh, S. J. .
JOURNAL OF NUCLEAR MATERIALS, 2021, 544
[4]   Deuterium permeation through the low-activated V-4Cr-4Ti alloy under plasma irradiation [J].
Cherkez, D., I ;
Spitsyn, A., V ;
Golubeva, A., V ;
Chernov, V. M. .
NUCLEAR MATERIALS AND ENERGY, 2020, 23
[5]   MODELING OF TRITIUM PERMEATION THROUGH ERBIUM OXIDE COATINGS [J].
Chikada, Takumi ;
Suzuki, Akihiro ;
Maier, Hans ;
Terai, Takayuki ;
Muroga, Takeo .
FUSION SCIENCE AND TECHNOLOGY, 2011, 60 (01) :389-393
[6]  
Crank J., 1956, MATH DIFFUSION
[7]   Tungsten coatings repair: An approach to increase the lifetime of plasma facing components [J].
Diez, M. ;
Firdaouss, M. ;
Richou, M. ;
Bultel, A. ;
Perry, F. ;
Roche, H. ;
Grisolia, C. ;
Missirlian, M. .
FUSION ENGINEERING AND DESIGN, 2019, 146 :800-804
[9]   In-vessel tritium retention and removal in ITER [J].
Federici, G ;
Anderl, RA ;
Andrew, P ;
Brooks, JN ;
Causey, RA ;
Coad, JP ;
Cowgill, D ;
Doerner, RP ;
Haasz, AA ;
Janeschitz, G ;
Jacob, W ;
Longhurst, GR ;
Nygren, R ;
Peacock, A ;
Pick, MA ;
Philipps, V ;
Roth, J ;
Skinner, CH ;
Wampler, WR .
JOURNAL OF NUCLEAR MATERIALS, 1999, 266 :14-29
[10]   Comparison of models for multi-component hydrogen isotope mixtures absorbing in or permeating through metals [J].
Fukada, Satoshi ;
Katayama, Kadzunari .
FUSION ENGINEERING AND DESIGN, 2016, 113 :298-302