An Efficient Artificial Rabbits Optimization Based on Mutation Strategy For Skin Cancer Prediction

被引:28
作者
Abd Elaziz, Mohamed [1 ,6 ,7 ,8 ,9 ]
Dahou, Abdelghani [2 ]
Mabrouk, Alhassan [3 ]
El-Sappagh, Shaker [4 ,6 ]
Aseeri, Ahmad O. [5 ]
机构
[1] Zagazig Univ, Fac Sci, Dept Math, Zagazig 44519, Egypt
[2] Univ Ahmed DRAIA, Math & Comp Sci Dept, Adrar 01000, Algeria
[3] Beni Suef Univ, Math & Comp Sci Dept, Fac Sci, Bani Suwayf 62511, Egypt
[4] Benha Univ, Fac Comp & Artificial Intelligence, Informat Syst Dept, Banha, Egypt
[5] Prince Sattam Bin Abdulaziz Univ, Coll Comp Engn & Sci, Dept Comp Sci, Al Kharj 11942, Saudi Arabia
[6] Galala Univ, Fac Comp Sci & Engn, Suez 435611, Egypt
[7] Ajman Univ, Coll Engn & Informat Technol, Artificial Intelligence Res Ctr AIRC, Ajman, U Arab Emirates
[8] Lebanese American Univ, Dept Elect & Comp Engn, Byblos 1350553, Lebanon
[9] Middle East Univ, MEU Res Unit, Amman 11831, Jordan
关键词
Medical image classification; Melanoma detection; Deep learning; Feature selection optimization; Artificial rabbits optimization; Gaussian mutation; Crossover operator; CLASSIFICATION;
D O I
10.1016/j.compbiomed.2023.107154
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurate skin lesion diagnosis is critical for the early detection of melanoma. However, the existing approaches are unable to attain substantial levels of accuracy. Recently, pre-trained Deep Learning (DL) models have been applied to tackle and improve efficiency on tasks such as skin cancer detection instead of training models from scratch. Therefore, we develop a robust model for skin cancer detection with a DL-based model as a feature extraction backbone, which is achieved using MobileNetV3 architecture. In addition, a novel algorithm called the Improved Artificial Rabbits Optimizer (IARO) is introduced, which uses the Gaussian mutation and crossover operator to ignore the unimportant features from those features extracted using MobileNetV3. The PH2, ISIC-2016, and HAM10000 datasets are used to validate the developed approach's efficiency. The empirical results show that the developed approach yields outstanding accuracy results of 87.17% on the ISIC-2016 dataset, 96.79% on the PH2 dataset, and 88.71 % on the HAM10000 dataset. Experiments show that the IARO can significantly improve the prediction of skin cancer.
引用
收藏
页数:13
相关论文
共 59 条
[11]  
Chaturvedi Saket S., 2021, Advanced Machine Learning Technologies and Applications. Proceedings of AMLTA 2020. Advances in Intelligent Systems and Computing (1141), P165, DOI 10.1007/978-981-15-3383-9_15
[12]   A social media event detection framework based on transformers and swarm optimization for public notification of crises and emergency management [J].
Dahou, Abdelghani ;
Mabrouk, Alhassan ;
Ewees, Ahmed A. ;
Gaheen, Marwa A. ;
Abd Elaziz, Mohamed .
TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE, 2023, 192
[13]   Optimal Skin Cancer Detection Model Using Transfer Learning and Dynamic-Opposite Hunger Games Search [J].
Dahou, Abdelghani ;
Aseeri, Ahmad O. ;
Mabrouk, Alhassan ;
Ibrahim, Rehab Ali ;
Al-Betar, Mohammed Azmi ;
Elaziz, Mohamed Abd .
DIAGNOSTICS, 2023, 13 (09)
[14]   Sigmoid-weighted linear units for neural network function approximation in reinforcement learning [J].
Elfwing, Stefan ;
Uchibe, Eiji ;
Doya, Kenji .
NEURAL NETWORKS, 2018, 107 :3-11
[15]   Deep learning-based forecasting model for COVID-19 outbreak in Saudi Arabia [J].
Elsheikh, Ammar H. ;
Saba, Amal, I ;
Abd Elaziz, Mohamed ;
Lu, Songfeng ;
Shanmugan, S. ;
Muthuramalingam, T. ;
Kumar, Ravinder ;
Mosleh, Ahmed O. ;
Essa, F. A. ;
Shehabeldeen, Taher A. .
PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2021, 149 :223-233
[16]   Dermatologist-level classification of skin cancer with deep neural networks (vol 542, pg 115, 2017) [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 546 (7660) :686-686
[17]   Social Media Toxicity Classification Using Deep Learning: Real-World Application UK Brexit [J].
Fan, Hong ;
Du, Wu ;
Dahou, Abdelghani ;
Ewees, Ahmed A. ;
Yousri, Dalia ;
Abd Elaziz, Mohamed ;
Elsheikh, Ammar H. ;
Abualigah, Laith ;
Al-qaness, Mohammed A. A. .
ELECTRONICS, 2021, 10 (11)
[18]   Cancer statistics for the year 2020: An overview [J].
Ferlay, Jacques ;
Colombet, Murielle ;
Soerjomataram, Isabelle ;
Parkin, Donald M. ;
Pineros, Marion ;
Znaor, Ariana ;
Bray, Freddie .
INTERNATIONAL JOURNAL OF CANCER, 2021, 149 (04) :778-789
[19]  
Foret P, 2021, Arxiv, DOI [arXiv:2010.01412, DOI 10.48550/ARXIV.2010.01412Y, 10.48550/arXiv.2010.01412]
[20]  
Howard AG, 2017, Arxiv, DOI [arXiv:1704.04861, 10.48550/arXiv.1704.04861, DOI 10.48550/ARXIV.1704.04861]