Theoretical evaluation of boron carbide nanotubes as non-enzymatic glucose sensors

被引:0
作者
Abudnejad, Nastern [1 ]
Salehpour, Mahboobeh [1 ]
Saadati, Zohreh [1 ]
机构
[1] Islamic Azad Univ, Dept Chem, Omidiyeh Branch, Omidiyeh, Iran
关键词
Density functional theory (DFT); Glucose sensor; Boron carbide nanotube; Doping technique; Biosensors; ADSORPTION BEHAVIOR; BC3; FUNCTIONALS; B3LYP; DFT;
D O I
10.1016/j.cplett.2023.140510
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Potential applicability of pristine and Al-doped boron carbide nanotube (BCN and Al-BCN) as glucose (GLU) sensor is investigated using density functional theory. Adsorption of GLU on top of pristine BCN leads to adsorption energy (Eads), enthalpy (Delta H), and Gibbs free energy (Delta G) of-14.82,-14.35, and-0.97 kcal.mol- 1, respectively. While the corresponding values for Al-BCN are calculated to be -23.29,-24.17, and-11.03 kcal. mol-1, respectively. The detection power of Al-BCN is considerably higher than that of BCN. The required time for desorption of GLU from BCN and Al-BCN is 7.04 x 10-6 and 1.12 x 101 s, respectively.
引用
收藏
页数:9
相关论文
共 50 条
[21]   Non-enzymatic analysis of glucose on printed films based on multi-walled carbon nanotubes [J].
Tsierkezos, Nikos G. ;
Ritter, Uwe ;
Wetzold, Nora ;
Huebler, Arved Carl .
MICROCHIMICA ACTA, 2012, 179 (1-2) :157-161
[22]   Electrospun palladium (IV)-doped copper oxide composite nanofibers for non-enzymatic glucose sensors [J].
Wang, Wei ;
Li, Zhenyu ;
Zheng, Wei ;
Yang, Jie ;
Zhang, Hongnan ;
Wang, Ce .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (09) :1811-1814
[23]   CuO/MoS2 nanocomposites for rapid and high sensitive non-enzymatic glucose sensors [J].
Arunbalaji, S. ;
Vasudevan, R. ;
Arivanandhan, M. ;
Alsalme, A. ;
Alghamdi, A. ;
Jayavel, R. .
CERAMICS INTERNATIONAL, 2020, 46 (10) :16879-16885
[24]   Carbon nanoparticles based non-enzymatic glucose sensor [J].
Pulidindi, Indra Neel ;
Gedanken, Aharon .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL ANALYTICAL CHEMISTRY, 2014, 94 (01) :28-35
[25]   Development of non-enzymatic glucose sensor based on efficient loading Ag nanoparticles on functionalized carbon nanotubes [J].
Baghayeri, Mehdi ;
Amiri, Amirhassan ;
Farhadi, Samaneh .
SENSORS AND ACTUATORS B-CHEMICAL, 2016, 225 :354-362
[26]   Green synthesis of reduced graphene oxide (rGO) and its applications in non-enzymatic electrochemical glucose sensors [J].
Gijare, Medha S. ;
Chaudhari, Sharmila R. ;
Ekar, Satish ;
Shaikh, Shoyebmohamad F. ;
Al-Enizi, Abdullah M. ;
Pandit, Bidhan ;
Garje, Anil D. .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2024, 450
[27]   Optimum Copper-Palladium Catalyst from a Combinatorial Library for Sensitive Non-Enzymatic Glucose Sensors [J].
Poetzelberger, Isabella ;
Mardare, Cezarina Cela ;
Uiberlacker, Lisa Maria ;
Hild, Sabine ;
Hassel, Achim Walter .
ELECTROCATALYSIS, 2018, 9 (03) :359-369
[28]   Antimicrobial, Photocatalytic, and Non-Enzymatic Glucose Sensors Applications of Nanoplate-Structured CuO:rGO Nanocomposites [J].
Preethi, Thangavel ;
Pachamuthu, Muthusamy Poomalai ;
Senthil, Karuppanan ;
Bellucci, Stefano .
CHEMISTRYSELECT, 2023, 8 (29)
[29]   Non-Enzymatic Amperometric Glucose Screen-Printed Sensors Based on Copper and Copper Oxide Particles [J].
Guati, Carlota ;
Gomez-Coma, Lucia ;
Fallanza, Marcos ;
Ortiz, Inmaculada .
APPLIED SCIENCES-BASEL, 2021, 11 (22)
[30]   Non-enzymatic portable optical sensors for microcystin-LR [J].
Lvova, Larisa ;
Goncalves, Carla Guanais ;
Prodi, Luca ;
Lombardo, Marco ;
Zaccheroni, Nelsi ;
Viaggiu, Emanuela ;
Congestri, Roberta ;
Guzzella, Licia ;
Pozzoni, Fiorenzo ;
Di Natale, Corrado ;
Paolesse, Roberto .
CHEMICAL COMMUNICATIONS, 2018, 54 (22) :2747-2750