Multiple hallucinated deep network for image quality assessment

被引:0
|
作者
Javidian, Z. [1 ]
Hashemi, S. [1 ]
Fard, S. M. Hazrati [1 ]
机构
[1] Shiraz Univ, Dept Comp Sci & Engn, Molla Sadra Ave, Shiraz, Iran
关键词
Image quality; assessment; Deep learning; Generative adversarial; network; Distribution alignment;
D O I
10.24200/sci.2022.59243.6134
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Image Quality Assessment (IQA) refers to quantitative evaluation of the human's perception of a distorted image quality. Blind IQA (BIQA) is a type of IQA that does not include any reference or information about the distortion. Since the human brain has no information about the distortion type, BIQA is more reliable and compatible with the real world. Traditional methods in this realm used an expert opinion, such as Natural Scene Statistics (NSS), to measure the distance of a distorted image from the distribution of pristine samples. In recent years, many deep learning-based IQA methods have been proposed to use the ability of deep models in automatic feature extraction. However, the main challenge of these models is the need for many annotated training samples. In this paper, through the inspiration of Human Visual System (HVS), a Generative Adversarial Network (GAN)-based approach was proposed to address this problem. To this end, multiple images were sampled from a submanifold of the pristine data manifold by conditioning the network on the corresponding distorted image. In addition, NSS features were employed to improve the network training and conduct the training process on the right track. The testing results of the proposed method on three datasets confirmed its superiority over other the state-of-the-art methods. (c) 2023 Sharif University of Technology. All rights reserved.
引用
收藏
页码:492 / 505
页数:14
相关论文
共 50 条
  • [21] Multitask Deep Neural Network With Knowledge-Guided Attention for Blind Image Quality Assessment
    Zhou, Tianwei
    Tan, Songbai
    Zhao, Baoquan
    Yue, Guanghui
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (08) : 7577 - 7588
  • [22] JOINT DEEP IMAGE RESTORATION AND UNSUPERVISED QUALITY ASSESSMENT
    Gedik, Hakan Emre
    Venkataramanan, Abhinau K.
    Bovik, Alan C.
    2024 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION, SSIAI, 2024, : 129 - 132
  • [23] Blind Image Quality Assessment via Deep Learning
    Hou, Weilong
    Gao, Xinbo
    Tao, Dacheng
    Li, Xuelong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2015, 26 (06) : 1275 - 1286
  • [24] A DEEP LEARNING APPROACH TO DOCUMENT IMAGE QUALITY ASSESSMENT
    Kang, Le
    Ye, Peng
    Li, Yi
    Doermann, David
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 2570 - 2574
  • [25] Attentive Deep Image Quality Assessment for Omnidirectional Stitching
    Duan, Huiyu
    Min, Xiongkuo
    Sun, Wei
    Zhu, Yucheng
    Zhang, Xiao-Ping
    Zhai, Guangtao
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2023, 17 (06) : 1150 - 1164
  • [26] On the use of deep learning for blind image quality assessment
    Bianco, Simone
    Celona, Luigi
    Napoletano, Paolo
    Schettini, Raimondo
    SIGNAL IMAGE AND VIDEO PROCESSING, 2018, 12 (02) : 355 - 362
  • [27] On the use of deep learning for blind image quality assessment
    Simone Bianco
    Luigi Celona
    Paolo Napoletano
    Raimondo Schettini
    Signal, Image and Video Processing, 2018, 12 : 355 - 362
  • [28] Explainability for deep learning in mammography image quality assessment
    Amanova, N.
    Martin, J.
    Elster, C.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2022, 3 (02):
  • [29] Image quality assessment of pediatric chest and abdomen CT by deep learning reconstruction
    Haesung Yoon
    Jisoo Kim
    Hyun Ji Lim
    Mi-Jung Lee
    BMC Medical Imaging, 21
  • [30] Image quality assessment of pediatric chest and abdomen CT by deep learning reconstruction
    Yoon, Haesung
    Kim, Jisoo
    Lim, Hyun Ji
    Lee, Mi-Jung
    BMC MEDICAL IMAGING, 2021, 21 (01)