Normalized saddle solutions for a mass supercritical Choquard equation

被引:9
作者
Xia, Jiankang [1 ]
Zhang, Xu [2 ]
机构
[1] Northwestern Polytech Univ, Sch Math & Stat, Xian 710129, Peoples R China
[2] Cent South Univ, Sch Math & Stat, Changsha 410083, Peoples R China
关键词
Choquard equation; Normalized saddle solutions; Coxeter symmetries; NONLINEAR SCHRODINGER-EQUATIONS; NODAL SOLUTIONS; STANDING WAVES; EXISTENCE;
D O I
10.1016/j.jde.2023.03.049
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the existence of saddle type normalized solutions for the nonlinear Choquard equation: [GRAPHICS] . Here N >=> 1, a > 0 is given in advance, I-alpha is the Riesz potential of order alpha is an element of (0, N) and the unknown parameter lambda appears as a Lagrange multiplier. In a mass supercritical setting on F, we prove the existence of a couple (u(a)(G) , lambda(G)(a)) is an element of H-1(R-N) x R- of saddle solutions for any a > 0 and for given finite Coxeter group G with its rank k <= N. Our method is to combine the concentration compactness principle with a minimax procedure in the saddle type symmetric subspace, which gives a variational framework of constructing normalized saddle solutions for the Choquard equation. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:471 / 497
页数:27
相关论文
共 43 条
[1]   Normalized solutions for a class of nonlinear Choquard equations [J].
Bartsch, Thomas ;
Liu, Yanyan ;
Liu, Zhaoli .
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2020, 1 (05)
[2]   Normalized solutions of nonlinear Schrodinger equations [J].
Bartsch, Thomas ;
de Valeriola, Sebastien .
ARCHIV DER MATHEMATIK, 2013, 100 (01) :75-83
[3]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P347
[4]   ORBITAL STABILITY OF STANDING WAVES FOR SOME NON-LINEAR SCHRODING EQUATIONS [J].
CAZENAVE, T ;
LIONS, PL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (04) :549-561
[5]  
Cingolani S., 2021, Springer INdAM Ser., V47, P23
[6]   Multiple solutions for the nonlinear Choquard equation with even or odd nonlinearities [J].
Cingolani, Silvia ;
Gallo, Marco ;
Tanaka, Kazunaga .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (02)
[7]   Positive and sign changing solutions to a nonlinear Choquard equation [J].
Clapp, Monica ;
Salazar, Dora .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 407 (01) :1-15
[8]  
Coxeter H. S. M., 1935, Journal of the London Mathematical Society, V10, P21
[9]  
Davis M.W., 2008, London Mathematical Society Monographs Series, V32
[10]   Constraint minimizers of mass critical Hartree energy functionals: Existence and mass concentration [J].
Deng, Yinbin ;
Lu, Lu ;
Shuai, Wei .
JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (06)