WAVE PROPAGATION FOR A DISCRETE DIFFUSIVE VACCINATION EPIDEMIC MODEL WITH BILINEAR INCIDENCE

被引:3
|
作者
Zhang, Ran [1 ]
Liu, Shengqiang [2 ]
机构
[1] Heilongjiang Univ, Sch Math Sci, Harbin 150080, Peoples R China
[2] Tiangong Univ, Sch Math Sci, Tianjin 300387, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Traveling wave solution; vaccination model; lattice dynamical system; Schauder?s fixed point theorem; Lyapunov functional; TRAVELING-WAVES; GLOBAL STABILITY; AGE;
D O I
10.11948/20220040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of the current paper is to study the existence of traveling wave solutions for a vaccination epidemic model with bilinear incidence. The existence result is determined by the basic reproduction number R0. More specifically, the system admits nontrivial traveling wave solutions when R0 > 1 and c >= c*, where c* is the critical wave speed. We also found that the traveling wave solution is connecting two different equilibria by constructing Lyapunov functional. Lastly, we give some biological explanations from the perspective of epidemiology.
引用
收藏
页码:715 / 733
页数:19
相关论文
共 50 条
  • [21] Wave propagation in a diffusive epidemic model with demography and time-periodic coefficients
    Wu, Weixin
    Hu, Zengyun
    Zhang, Long
    Teng, Zhidong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (02):
  • [22] Traveling Wave Solutions of a Diffusive SEIR Epidemic Model with Nonlinear Incidence Rate
    Zhao, Lin
    Zhang, Liang
    Huo, Haifeng
    TAIWANESE JOURNAL OF MATHEMATICS, 2019, 23 (04): : 951 - 980
  • [23] Mixed types of waves in a discrete diffusive epidemic model with nonlinear incidence and time delay
    Zhou, Jiangbo
    Song, Liyuan
    Wei, Jingdong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (08) : 4491 - 4524
  • [24] Analysis of wave propagation in a discrete chain of bilinear oscillators
    Kuznetsova, Maria S.
    Pasternak, Elena
    Dyskin, Arcady V.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2017, 24 (03) : 455 - 460
  • [25] Traveling waves in a diffusive influenza epidemic model with vaccination
    Xu, Zhiting
    Ai, Cuihua
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (15-16) : 7265 - 7280
  • [26] Dynamics of a diffusive vaccination model with nonlinear incidence
    Yang, Yu
    Zhang, Shengliang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (12) : 4355 - 4360
  • [27] TRAVELING WAVE SOLUTIONS FOR A DIFFUSIVE SIS EPIDEMIC MODEL
    Ding, Wei
    Huang, Wenzhang
    Kansakar, Siroj
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (05): : 1291 - 1304
  • [28] Threshold dynamics of an uncertain SIRS epidemic model with a bilinear incidence
    Tan, Simin
    Zhang, Ling
    Sheng, Yuhong
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (05) : 9083 - 9093
  • [29] GLOBAL DYNAMICS OF AN SIVS EPIDEMIC MODEL WITH BILINEAR INCIDENCE RATE
    Parsamanesh, Mahmood
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, (40): : 544 - 557
  • [30] Isolation Control for SIR Epidemic Model with Bilinear Incidence Rates
    Guang, Yang
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 1866 - 1869