Synthesis, structure, and lithium storage performance of non-conductive metal-organic frameworks for high-performance lithium-ion batteries

被引:0
|
作者
Yan, Yong [1 ]
Lin, Xihao [1 ]
Zhang, Weibing [1 ]
Li, Xinhua [1 ]
机构
[1] Wenzhou Univ, Coll Chem & Mat Engn, Wenzhou 325035, Zhejiang, Peoples R China
关键词
Pillar-layered metal-organic frameworks; Insulator; Single-crystal structure; High performance; Lithium-ion batteries; ANODE MATERIALS; ELECTRODE; NANOSHEETS; COMPOSITE; MOFS;
D O I
10.1016/j.jelechem.2022.117096
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Some metal-organic frameworks (MOFs) cannot be used as electrode materials for lithium-ion batteries because of their inferior intrinsic electrocatalytic activity and poor conductivity. Herein, the application of two nickel (II) cluster-based pillar-layered MOFs, Ni-mba-Na ([Ni8(mba)6(Cl)2Na(OH-)3]n, H2mba is 2-mercaptobenzoic acid) and Ni-mba-K ([Ni8(mba)6(Cl)2K(OH-)3]n), as electrode materials are reported. They differ from conductive MOFs because they are insulators with small specific surface areas (<10 m2g-1) and H2mba is an inexpensive chemical raw material. The conductivities of Ni-mba-Na and Ni-mba-K at 30 celcius are 4.002 x 10-10 and >10-11 S cm-1, respectively. They exhibit excellent lithium storage performance, stability, and high inherent density (1.835 and 1.838 g cm-3) and specific capacity (1091.6, and 905.6 mAh/g at the first cycle). Design recommendations for these MOFs are provided based on their structure and performance differences. This paper provides a novel application of non-conductive MOFs in the energy storage field and strategy for design of high-performance electrode materials for lithium-ion batteries.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Synthesis of ZnS/C Composites by Metal-Organic Framework as High-Performance Lithium-Ion Batteries
    Wu, Hongda
    Li, Guang
    Li, Yue
    Geng, Zhongxing
    Ren, Tieqiang
    Cai, Tianfeng
    Yang, Zhanxu
    CRYSTAL RESEARCH AND TECHNOLOGY, 2019, 54 (06)
  • [2] Hierarchical Cobalt-Based Metal-Organic Framework for High-Performance Lithium-Ion Batteries
    Chen, Lin
    Yang, Wenjuan
    Wang, Jianbiao
    Chen, Congrong
    Wei, Mingdeng
    CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (50) : 13362 - 13367
  • [3] Metal-Organic-Frameworks Derivation of Mesoporous NiO Nanorod for High-Performance Lithium Ion Batteries
    Pang, Huicong
    Guan, Baoqin
    Sun, Weiwei
    Wang, Yong
    ELECTROCHIMICA ACTA, 2016, 213 : 351 - 357
  • [4] Conductive Metal-Organic Frameworks for Rechargeable Lithium Batteries
    Deng, Fengjun
    Zhang, Yuhang
    Yu, Yingjian
    BATTERIES-BASEL, 2023, 9 (02):
  • [5] High-performance Sn-based metal-organic frameworks anode materials synthesized by flexible and controllable methods for lithium-ion batteries
    Wu, Na
    Jia, Ting
    Shi, Ya-Ru
    Yang, Yu-Jing
    Li, Tao Hai
    Li, Feng
    Wang, Zhe
    IONICS, 2020, 26 (03) : 1547 - 1553
  • [6] Cluster-Bridging-Coordinated Bimetallic Metal-Organic Framework as High-Performance Anode Material for Lithium-Ion Storage
    Yan, Wen
    Fan, Kun
    Zheng, Li-Min
    Jin, Zhong
    SMALL STRUCTURES, 2021, 2 (12):
  • [7] Metal-organic framework-templated porous SnO/C polyhedrons for high-performance lithium-ion batteries
    Bian, Zhuo
    Li, Ang
    He, Renyue
    Song, Huaihe
    Chen, Xiaohong
    Zhou, Jisheng
    Ma, Zhaokun
    ELECTROCHIMICA ACTA, 2018, 289 : 389 - 396
  • [8] Facile Synthesis of Ge@C Core-Shell Nanocomposites for High-Performance Lithium Storage in Lithium-Ion Batteries
    Wang, Ying
    Wang, Guoxiu
    CHEMISTRY-AN ASIAN JOURNAL, 2013, 8 (12) : 3142 - 3146
  • [9] Solvated Graphene Frameworks as High-Performance Anodes for Lithium-Ion Batteries
    Xu, Yuxi
    Lin, Zhaoyang
    Zhong, Xing
    Papandrea, Ben
    Huang, Yu
    Duan, Xiangfeng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (18) : 5345 - 5350
  • [10] Pillared-Layer Metal Organic Frameworks for Improved Lithium-Ion Storage Performance
    Gong, Teng
    Lou, Xiaobing
    Gao, En-Qing
    Hu, Bingwen
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (26) : 21839 - 21847