A solution to the pressure velocity coupling problem in computational fluid dynamics

被引:0
|
作者
Raithby, G. D. [1 ,2 ]
机构
[1] Thermal Sci Ltd, Waterloo, ON, Canada
[2] Thermal Sci Ltd, 674 Meadowsweet Ave, Waterloo, ON N2V 0A6, Canada
关键词
Computational fluids; pressure based; p-V coupling; incompressible; compressible; FLOW; HEAT;
D O I
10.1080/10407790.2023.2200213
中图分类号
O414.1 [热力学];
学科分类号
摘要
A new method is shown to provide a solution to the long standing pressure-velocity coupling problem encountered in pressure-based Computational Fluid Dynamics. This problem occurs when the dependent variables are colocated on the computational mesh. A solution was found by requiring that the interpolation equations, used to relate the velocity and density at the control volume faces to the nodal values, be constrained to conserve mass. This is referred to as Mass Constrained Interpolation. It also leads to a strategy for deriving and testing boundary conditions. The method is demonstrated by comparing one-dimensional computational solutions to exact solutions for a wide range of incompressible and compressible flows.
引用
收藏
页码:208 / 233
页数:26
相关论文
共 50 条
  • [41] Visualization of vortical flows in computational fluid dynamics
    Volkov, K. N.
    Emel'yanov, V. N.
    Teterina, I. V.
    Yakovchuk, M. S.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2017, 57 (08) : 1360 - 1375
  • [42] Computational fluid dynamics modeling of surface condensation
    Yilmaz, Deniz
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2020, 42 (07)
  • [43] Computer animation challenges for computational fluid dynamics
    Vines, Mauricio
    Lee, Won-Sook
    Mavriplis, Catherine
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2012, 26 (6-8) : 407 - 434
  • [44] Strategies for Computational Fluid Dynamics Validation Experiments
    Gargiulo, Aldo
    Duetsch-Patel, Julie E.
    Borgoltz, Aurelien
    Devenport, William J.
    Roy, Christopher J.
    Lowe, K. Todd
    JOURNAL OF VERIFICATION, VALIDATION AND UNCERTAINTY QUANTIFICATION, 2023, 8 (03):
  • [45] Computational Fluid Dynamics Simulation of a Thermoacoustic Refrigerator
    Abd El-Rahman, Ahmed I.
    Abdel-Rahman, Ehab
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2014, 28 (01) : 78 - 86
  • [46] Visualization of vortical flows in computational fluid dynamics
    K. N. Volkov
    V. N. Emel’yanov
    I. V. Teterina
    M. S. Yakovchuk
    Computational Mathematics and Mathematical Physics, 2017, 57 : 1360 - 1375
  • [47] A Review: Fundamentals of Computational Fluid Dynamics (CFD)
    Zawawi, M. H.
    Saleha, A.
    Salwa, A.
    Hassan, N. H.
    Zahari, N. M.
    Ramhi, M. Z.
    Muda, Z. C.
    GREEN DESIGN AND MANUFACTURE: ADVANCED AND EMERGING APPLICATIONS, 2018, 2030
  • [48] Computational fluid dynamics in congenital heart disease
    DeCampli, William M.
    Argueta-Morales, I. Ricardo
    Divo, Eduardo
    Kassab, Alain J.
    CARDIOLOGY IN THE YOUNG, 2012, 22 (06) : 800 - 808
  • [49] Application of Computational Fluid Dynamics (CFD) for nanofluids
    Kamyar, A.
    Saidur, R.
    Hasanuzzaman, M.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2012, 55 (15-16) : 4104 - 4115
  • [50] Enhancing computational fluid dynamics with machine learning
    Vinuesa, Ricardo
    Brunton, Steven L.
    NATURE COMPUTATIONAL SCIENCE, 2022, 2 (06): : 358 - 366