In Situ Structure of a Mo-Doped Pt-Ni Catalyst during Electrochemical Oxygen Reduction Resolved from Machine Learning-Based Grand Canonical Global Optimization

被引:10
|
作者
Li, Ji-Li [1 ]
Li, Ye-Fei [1 ]
Liu, Zhi-Pan [1 ,2 ,3 ]
机构
[1] Fudan Univ, Collaborat Innovat Ctr Chem Energy Mat, Dept Chem, Shanghai Key Lab Mol Catalysis & Innovat Mat,Key L, Shanghai 200433, Peoples R China
[2] Shanghai Qi Zhi Inst, Shanghai 200030, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Organ Chem, Key Lab Synthet & Selfassembly Chem Organ Funct Mo, Shanghai, Peoples R China
来源
JACS AU | 2023年 / 3卷 / 04期
基金
美国国家科学基金会;
关键词
oxygen reduction reaction; SSW-NN; GCMC; PtNiMo alloy; machine learning; SURFACE WALKING METHOD; ORR PERFORMANCE; NANOPARTICLES; MECHANISM; ALLOY; STABILITY; SHAPE; PLATINUM; DYNAMICS; PT(111);
D O I
10.1021/jacsau.3c00038
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Pt-Ni alloy is by far the most active cathode material for oxygen reduction reaction (ORR) in the proton-exchange membrane fuel cell, and the addition of a tiny amount of a third-metal Mo can significantly improve the catalyst durability and activity. Here, by developing machine learning-based grand canonical global optimization, we are able to resolve the in situ structures of this important three-element alloy system under ORR conditions and identify their correlations with the enhanced ORR performance. We disclose the bulk phase diagram of Pt-Ni-Mo alloys and determine the surface structures under the ORR reaction conditions by exploring millions of likely structure candidates. The pristine Pt-Ni-Mo alloy surfaces are shown to undergo significant structure reconstruction under ORR reaction conditions, where a surface-adsorbed MoO4 monomer or Mo2Ox dimers cover the Pt-skin surface above 0.9 V vs RHE and protect the surface from Ni leaching. The physical origins are revealed by analyzing the electronic structure of O atoms in MoO4 and on the Pt surface. In viewing the role of high-valence transition metal oxide clusters, we propose a set of quantitative measures for designing better catalysts and predict that six elements in the periodic table, namely, Mo, Tc, Os, Ta, Re, and W, can be good candidates for alloying with PtNi to improve the ORR catalytic performance. We demonstrate that machine learning-based grand canonical global optimization is a powerful and generic tool to reveal the catalyst dynamics behavior in contact with a complex reaction environment.
引用
收藏
页码:1162 / 1175
页数:14
相关论文
empty
未找到相关数据