Artificial intelligence in diagnostic and interventional radiology: Where are we now?

被引:91
作者
Boeken, Tom [1 ,2 ,3 ]
Feydy, Jean [3 ]
Lecler, Augustin [1 ,4 ]
Soyer, Philippe [1 ,5 ]
Feydy, Antoine [1 ,5 ]
Barat, Maxime [1 ]
Durona, Loic [1 ,4 ]
机构
[1] Univ Paris Cite, Fac Med, F-75006 Paris, France
[2] Hop Europeen Georges Pompidou, APHP, Dept Vasc & Oncol Intervent Radiol, F-75015 Paris, France
[3] INRIA, HeKA team, F-75012 Paris, France
[4] Rothschild Fdn Hosp, Dept Radiol, F-75019 Paris, France
[5] Hop Cochin, APHP, Dept Radiol, F-75014 Paris, France
关键词
Artificial intelligence; Diagnosis; Interventional radiology; Medical imaging; Radiomics; RADIOMICS; ONCOLOGY; IMPACT; MODEL;
D O I
10.1016/j.diii.2022.11.004
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The emergence of massively parallel yet affordable computing devices has been a game changer for research in the field of artificial intelligence (AI). In addition, dramatic investment from the web giants has fostered the development of a high-quality software stack. Going forward, the combination of faster computers with dedicated software libraries and the widespread availability of data has opened the door to more flexibility in the design of AI models. Radiomics is a process used to discover new imaging biomarkers that has multiple applications in radiology and can be used in conjunction with AI. AI can be used throughout the various pro-cesses of diagnostic imaging, including data acquisition, reconstruction, analysis and reporting. Today, the concept of "AI-augmented" radiologists is preferred to the theory of the replacement of radiologists by AI in many indications. Current evidence bolsters the assumption that AI-assisted radiologists work better and faster. Interventional radiology becomes a data-rich specialty where the entire procedure is fully recorded in a standardized DICOM format and accessible via standard picture archiving and communication systems. No other interventional specialty can bolster such readiness. In this setting, interventional radiology could lead the development of AI-powered applications in the broader interventional community. This article provides an update on the current status of radiomics and AI research, analyzes upcoming challenges and also dis-cusses the main applications in AI in interventional radiology to help radiologists better understand and criti-cize articles reporting AI in medical imaging.(c) 2022 Societe francaise de radiologie. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 47 条
[1]   Use of Artificial Intelligence to Reduce Radiation Exposure at Fluoroscopy-Guided Endoscopic Procedures [J].
Bang, Ji Young ;
Hough, Matthew ;
Hawes, Robert H. ;
Varadarajulu, Shyam .
AMERICAN JOURNAL OF GASTROENTEROLOGY, 2020, 115 (04) :555-561
[2]   In-Bore Transrectal MRI-Guided Biopsy With Robotic Assistance in the Diagnosis of Prostate Cancer: An Analysis of 57 Patients [J].
Barral, Matthias ;
Lefevre, Arnaud ;
Camparo, Philippe ;
Hoogenboom, Martijn ;
Pierre, Thibaut ;
Soyer, Philippe ;
Cornud, Francois .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2019, 213 (04) :W171-W179
[3]   Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology [J].
Bera, Kaustav ;
Schalper, Kurt A. ;
Rimm, David L. ;
Velcheti, Vamsidhar ;
Madabhushi, Anant .
NATURE REVIEWS CLINICAL ONCOLOGY, 2019, 16 (11) :703-715
[4]   Assessing Radiology Research on Artificial Intelligence: A Brief Guide for Authors, Reviewers, and Readers-From the Radiology Editorial Board [J].
Bluemke, David A. ;
Moy, Linda ;
Bredella, Miriam A. ;
Ertl-Wagner, Birgit B. ;
Fowler, Kathryn J. ;
Goh, Vicky J. ;
Halpern, Elkan F. ;
Hess, Christopher P. ;
Schiebler, Mark L. ;
Weiss, Clifford R. .
RADIOLOGY, 2020, 294 (03) :487-489
[5]   French Imaging Database Against Coronavirus (FIDAC): A large COVID-19 multi-center chest CT database [J].
Boussel, Loic ;
Bartoli, Jean-Michel ;
Adnane, Samy ;
Meder, Jean-Francois ;
Mallea, Patrick ;
Clech, Jeremy ;
Zins, Marc ;
Beregi, Jean-Paul .
DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2022, 103 (10) :460-463
[6]   Added value of an artificial intelligence solution for fracture detection in the radiologist?s daily trauma emergencies workflow [J].
Canoni-Meynet, Lisa ;
Verdot, Pierre ;
Danner, Alexis ;
Calame, Paul ;
Aubry, Sebastien .
DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2022, 103 (12) :594-600
[7]   AI-driven quantification, staging and outcome prediction of COVID-19 pneumonia [J].
Chassagnon, Guillaume ;
Vakalopoulou, Maria ;
Battistella, Enzo ;
Christodoulidis, Stergios ;
Trieu-Nghi Hoang-Thi ;
Dangeard, Severine ;
Deutsch, Eric ;
Andre, Fabrice ;
Guillo, Enora ;
Halm, Nara ;
El Hajj, Stefany ;
Bompard, Florian ;
Neveu, Sophie ;
Hani, Chahinez ;
Saab, Ines ;
Campredon, Alienor ;
Koulakian, Hasmik ;
Bennani, Souhail ;
Freche, Gael ;
Barat, Maxime ;
Lombard, Aurelien ;
Fournier, Laure ;
Monnier, Hippolyte ;
Grand, Teodor ;
Gregory, Jules ;
Nguyen, Yann ;
Khalil, Antoine ;
Mahdjoub, Elyas ;
Brillet, Pierre-Yves ;
Ba, Stephane Tran ;
Bousson, Valerie ;
Mekki, Ahmed ;
Carlier, Robert-Yves ;
Revel, Marie-Pierre ;
Paragios, Nikos .
MEDICAL IMAGE ANALYSIS, 2021, 67
[8]  
Collins GS, 2015, ANN INTERN MED, V162, P735, DOI [10.7326/L15-5093, 10.7326/L15-5093-2]
[9]   A systematic review of automated feeder detection software for locoregional treatment of hepatic tumors [J].
Cui, Z. ;
Shukla, P. A. ;
Habibollahi, P. ;
Park, H. S. ;
Fischman, A. ;
Kolber, M. K. .
DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2020, 101 (7-8) :439-449
[10]   Early evaluation using a radiomic signature of unresectable hepatic metastases to predict outcome in patients with colorectal cancer treated with FOLFIRI and bevacizumab [J].
Dohan, Anthony ;
Gallix, Benoit ;
Guiu, Boris ;
Le Malicot, Karine ;
Reinhold, Caroline ;
Soyer, Philippe ;
Bennouna, Jaafar ;
Ghiringhelli, Francois ;
Barbier, Emilie ;
Boige, Valerie ;
Taieb, Julien ;
Bouche, Olivier ;
Francois, Eric ;
Phelip, Jean-Marc ;
Borel, Christian ;
Faroux, Roger ;
Seitz, Jean-Francois ;
Jacquot, Stephane ;
Ben Abdelghani, Meher ;
Khemissa-Akouz, Faiza ;
Genet, Dominique ;
Jouve, Jean Louis ;
Rinaldi, Yves ;
Desseigne, Francoise ;
Texereau, Patrick ;
Suc, Etienne ;
Lepage, Come ;
Aparicio, Thomas ;
Hoeffel, Christine .
GUT, 2020, 69 (03) :531-539