Schrödinger-Maxwell equations driven by mixed local-nonlocal operators

被引:3
作者
Cangiotti, Nicolo [1 ]
Caponi, Maicol [2 ]
Maione, Alberto [3 ]
Vitillaro, Enzo [4 ]
机构
[1] Politecn Milan, Dept Math, Via Bonardi 9,Campus Leonardo, I-20133 Milan, Italy
[2] Univ Napoli Federico II, Dipartimento Matemat & Applicazioni R Caccioppoli, Via Cintia,Monte S Angelo, I-80126 Naples, Italy
[3] Ctr Recerca Matemat, Edif C,Campus Bellaterra, Bellaterra 08193, Spain
[4] Univ Perugia, Dipartimento Matemat & Informat DMI, Via Luigi Vanvitelli 1, I-06123 Perugia, Italy
关键词
Nonlocal operators; fractional operators; variational methods; critical points theory; Schrodinger-Maxwell system; KLEIN-GORDON-MAXWELL;
D O I
10.1007/s13540-024-00251-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove existence of solutions to Schrodinger-Maxwell type systems involving mixed local-nonlocal operators. Two different models are considered: classical Schrodinger-Maxwell equations and Schrodinger-Maxwell equations with a coercive potential, and the main novelty is that the nonlocal part of the operator is allowed to be nonpositive definite according to a real parameter. We then provide a range of parameter values to ensure the existence of solitary standing waves, obtained as Mountain Pass critical points for the associated energy functionals.
引用
收藏
页码:677 / 705
页数:29
相关论文
共 27 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]   Ground state solutions for the nonlinear Schrodinger-Maxwell equations [J].
Azzollini, A. ;
Pomponio, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :90-108
[4]  
Benci V., 1998, Topol. Methods Nonlinear Anal, V11, P283
[5]   Mixed local and nonlocal elliptic operators: regularity and maximum principles [J].
Biagi, Stefano ;
Dipierro, Serena ;
Valdinoci, Enrico ;
Vecchi, Eugenio .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2022, 47 (03) :585-629
[6]   Semilinear elliptic equations involving mixed local and nonlocal operators [J].
Biagi, Stefano ;
Vecchi, Eugenio ;
Dipierro, Serena ;
Valdinoci, Enrico .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2021, 151 (05) :1611-1641
[7]   Klein-Gordon-Maxwell Equations Driven by Mixed Local-Nonlocal Operators [J].
Cangiotti, Nicolo ;
Caponi, Maicol ;
Maione, Alberto ;
Vitillaro, Enzo .
MILAN JOURNAL OF MATHEMATICS, 2023, 91 (02) :375-403
[8]   High energy solutions for the superlinear Schrodinger-Maxwell equations [J].
Chen, Shang-Jie ;
Tang, Chun-Lei .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) :4927-4934
[9]   SELF-TRAPPING OF OPTICAL BEAMS [J].
CHIAO, RY ;
GARMIRE, E ;
TOWNES, CH .
PHYSICAL REVIEW LETTERS, 1964, 13 (15) :479-&
[10]  
Coclite GM, 2004, ELECTRON J DIFFER EQ