Capturing persistence of high-dimensional delayed complex balanced chemical reaction systems via decomposition of semilocking sets

被引:0
作者
Zhang, Xiaoyu [1 ]
Gao, Chuanhou [2 ]
Dochain, Denis [3 ]
机构
[1] Zhejiang Univ, Dept Control Sci & Engn, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Peoples R China
[3] UCLouvain, ICTEAM, Batiment Euler, Ave Georges Iemaitre 4-6, B-1348 Louvain La Neuve, Belgium
来源
2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC | 2023年
基金
中国博士后科学基金;
关键词
DYNAMICS; BIODIVERSITY; STABILITY;
D O I
10.1109/CDC49753.2023.10383225
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the increasing complexity of time-delayed systems, the diversification of boundary types of chemical reaction systems poses a challenge for persistence analysis. This paper focuses on delayed complex balanced mass-action systems (DeCBMAS) and it derives that some boundaries of a DeCBMAS cannot contain an.-limit point of some trajectory with positive initial conditions by using the method of semilocking set decomposition and the property of the facet, further expanding the range of persistence of DeCBMASs. These findings demonstrate the effectiveness of semilocking set decomposition to address the complex boundaries and offer insights into the persistence analysis.
引用
收藏
页码:1625 / 1630
页数:6
相关论文
共 23 条
  • [1] Allen L.J.S., 2010, INTRO STOCHASTIC PRO, V2nd ed.
  • [2] Anderson D. F., ROYAL SOC INTERFACE, V18, P0
  • [3] THE DYNAMICS OF WEAKLY REVERSIBLE POPULATION PROCESSES NEAR FACETS
    Anderson, David F.
    Shiu, Anne
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2010, 70 (06) : 1840 - 1858
  • [4] Global asymptotic stability for a class of nonlinear chemical equations
    Anderson, David F.
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2008, 68 (05) : 1464 - 1476
  • [5] Chemical reaction network approaches to Biochemical Systems Theory
    Arceo, Carlene Perpetua P.
    Jose, Editha C.
    Marin-Sanguino, Alberto
    Mendoza, Eduardo R.
    [J]. MATHEMATICAL BIOSCIENCES, 2015, 269 : 135 - 152
  • [6] Metabolic principles of persistence and pathogenicity in Mycobacterium tuberculosis
    Ehrt, Sabine
    Schnappinger, Dirk
    Rhee, Kyu Y.
    [J]. NATURE REVIEWS MICROBIOLOGY, 2018, 16 (08) : 496 - 507
  • [7] DYNAMICS OF OPEN CHEMICAL SYSTEMS AND ALGEBRAIC STRUCTURE OF UNDERLYING REACTION NETWORK
    FEINBERG, M
    HORN, FJM
    [J]. CHEMICAL ENGINEERING SCIENCE, 1974, 29 (03) : 775 - 787
  • [8] FEINBERG M, 1972, ARCH RATION MECH AN, V49, P187
  • [9] A Geometric Approach to the Global Attractor Conjecture
    Gopalkrishnan, Manoj
    Miller, Ezra
    Shiu, Anne
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2014, 13 (02): : 758 - 797
  • [10] Spatial heterogeneity and the persistence of infectious diseases
    Hagenaars, TJ
    Donnelly, CA
    Ferguson, NM
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2004, 229 (03) : 349 - 359