Phenotypic Variation and Relationships between Grain Yield, Protein Content and Unmanned Aerial Vehicle-Derived Normalized Difference Vegetation Index in Spring Wheat in Nordic-Baltic Environments

被引:2
作者
Jansone, Zaiga [1 ,2 ]
Rendenieks, Zigmars [1 ]
Lapans, Andris [1 ]
Tamm, Ilmar [3 ]
Ingver, Anne [3 ]
Gorash, Andrii [4 ]
Aleliunas, Andrius [4 ]
Brazauskas, Gintaras [4 ]
Shafiee, Sahameh [5 ]
Mroz, Tomasz [5 ]
Lillemo, Morten [5 ]
Kollist, Hannes [6 ]
Bleidere, Mara [1 ]
机构
[1] Stende Res Ctr, Inst Agr Resources & Econ, Crop Res Dept, LV-3258 Dizstende, Latvia
[2] Latvia Univ Life Sci & Technol, Fac Agr, Liela St 2, LV-3001 Jelgava, Latvia
[3] Ctr Estonian Rural Res & Knowledge, J Aamisepa 1, EE-48309 Jogeva, Estonia
[4] Lithuanian Res Ctr Agr & Forestry, Inst Agr, LT-58344 Akademija, Lithuania
[5] Norwegian Univ Life Sci, Dept Plant Sci, Kirkeveien 12, NO-1433 As, Norway
[6] Univ Tartu, Inst Bioengn, Nooruse 1, EE-50411 Tartu, Estonia
来源
AGRONOMY-BASEL | 2024年 / 14卷 / 01期
关键词
genotype; meteorological parameters; nitrogen fertilization rate; multispectral vegetation index; correlations; WINTER-WHEAT; CLIMATE-CHANGE; NDVI; PERFORMANCE; ADAPTATION; PREDICTION; BIOMASS; GROWTH; WATER;
D O I
10.3390/agronomy14010051
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Accurate and robust methods are needed to monitor crop growth and predict grain yield and quality in breeding programs, particularly under variable agrometeorological conditions. Field experiments were conducted during two successive cropping seasons (2021, 2022) at four trial locations (Estonia, Latvia, Lithuania, Norway). The focus was on assessment of the grain yield (GY), grain protein content (GPC), and UAV-derived NDVI measured at different plant growth stages. The performance and stability of 16 selected spring wheat genotypes were assessed under two N application rates (75, 150 kg N ha(-1)) and across different agrometeorological conditions. Quantitative relationships between agronomic traits and UAV-derived variables were determined. None of the traits exhibited a significant (p < 0.05) genotype-by-nitrogen interaction. High-yielding and high-protein genotypes were detected with a high WAASB stability, specifically under high and low N rates. This study highlights the significant effect of an NDVI analysis at GS55 and GS75 as key linear predictors, especially concerning spring wheat GYs. However, the effectiveness of these indices depends on the specific growing conditions in different, geospatially distant locations, limiting their universal utility.
引用
收藏
页数:20
相关论文
共 61 条
[1]   Nitrogen Nutrition Improves the Potential of Wheat (Triticum aestivum L.) to Alleviate the Effects of Drought Stress during Vegetative Growth Periods [J].
Abid, Muhammad ;
Tian, Zhongwei ;
Ata-Ul-Karim, Syed Tahir ;
Cui, Yakun ;
Liu, Yang ;
Zahoor, Rizwan ;
Jiang, Dong ;
Dai, Tingbo .
FRONTIERS IN PLANT SCIENCE, 2016, 7
[2]  
Ali M., 2017, J. Plant Product, V8, P261, DOI DOI 10.21608/JPP.2017.39617
[3]  
[Anonymous], 2021, Crops and Livestock products
[4]   Climate change impact and adaptation for wheat protein [J].
Asseng, Senthold ;
Martre, Pierre ;
Maiorano, Andrea ;
Roetter, Reimund P. ;
O'Leary, Garry J. ;
Fitzgerald, Glenn J. ;
Girousse, Christine ;
Motzo, Rosella ;
Giunta, Francesco ;
Babar, M. Ali ;
Reynolds, Matthew P. ;
Kheir, Ahmed M. S. ;
Thorburn, Peter J. ;
Waha, Katharina ;
Ruane, Alex C. ;
Aggarwal, Pramod K. ;
Ahmed, Mukhtar ;
Balkovic, Juraj ;
Basso, Bruno ;
Biernath, Christian ;
Bindi, Marco ;
Cammarano, Davide ;
Challinor, Andrew J. ;
De Sanctis, Giacomo ;
Dumont, Benjamin ;
Rezaei, Ehsan Eyshi ;
Fereres, Elias ;
Ferrise, Roberto ;
Garcia-Vila, Margarita ;
Gayler, Sebastian ;
Gao, Yujing ;
Horan, Heidi ;
Hoogenboom, Gerrit ;
Izaurralde, R. Cesar ;
Jabloun, Mohamed ;
Jones, Curtis D. ;
Kassie, Belay T. ;
Kersebaum, Kurt-Christian ;
Klein, Christian ;
Koehler, Ann-Kristin ;
Liu, Bing ;
Minoli, Sara ;
San Martin, Manuel Montesino ;
Mueller, Christoph ;
Kumar, Soora Naresh ;
Nendel, Claas ;
Olesen, Jorgen Eivind ;
Palosuo, Taru ;
Porter, John R. ;
Priesack, Eckart .
GLOBAL CHANGE BIOLOGY, 2019, 25 (01) :155-173
[5]   Mid-season prediction of grain yield and protein content of spring barley cultivars using high-throughput spectral sensing [J].
Barmeier, Gero ;
Hofer, Katharina ;
Schmidhalter, Urs .
EUROPEAN JOURNAL OF AGRONOMY, 2017, 90 :108-116
[6]   Utilization of single-image normalized difference vegetation index (SI-NDVI) for early plant stress detection [J].
Beisel, Nicole S. ;
Callaham, Jordan B. ;
Sng, Natasha J. ;
Taylor, Dylan J. ;
Paul, Anna-Lisa ;
Ferl, Robert J. .
APPLICATIONS IN PLANT SCIENCES, 2018, 6 (10)
[7]   A Remote Sensing Approach for Regional-Scale Mapping of Agricultural Land-Use Systems Based on NDVI Time Series [J].
Bellon, Beatriz ;
Begue, Agnes ;
Lo Seen, Danny ;
de Almeida, Claudio Aparecido ;
Simoes, Margareth .
REMOTE SENSING, 2017, 9 (06)
[8]   NDVI as a Potential Tool for Predicting Biomass, Plant Nitrogen Content and Growth in Wheat Genotypes Subjected to Different Water and Nitrogen Conditions [J].
Cabrera-Bosquet, L. ;
Molero, G. ;
Stellacci, A. M. ;
Bort, J. ;
Nogues, S. ;
Araus, J. L. .
CEREAL RESEARCH COMMUNICATIONS, 2011, 39 (01) :147-159
[9]   Yield prediction in wheat (Triticum aestivum L.) using spectral reflectance indices [J].
Chandel, N. S. ;
Tiwari, P. S. ;
Singh, K. P. ;
Jat, D. ;
Gaikwad, B. B. ;
Tripathi, H. ;
Golhani, K. .
CURRENT SCIENCE, 2019, 116 (02) :272-278
[10]   A multi-environmental study of recent breeding progress on nitrogen use efficiency in wheat (Triticum aestivum L.) [J].
Cormier, Fabien ;
Faure, Sebastien ;
Dubreuil, Pierre ;
Heumez, Emmanuel ;
Beauchene, Katia ;
Lafarge, Stephane ;
Praud, Sebastien ;
Le Gouis, Jacques .
THEORETICAL AND APPLIED GENETICS, 2013, 126 (12) :3035-3048