Spring Design of Triboelectric Nanogenerator with MXene-Modified Interface for Fluid Energy Harvesting and Water Level Monitoring

被引:11
作者
Tao, Yang [1 ,2 ]
Xiang, Huijing [3 ,4 ]
Cao, Xia [1 ,2 ,3 ,4 ]
Wang, Ning [3 ,4 ]
机构
[1] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 101400, Peoples R China
[2] Univ Chinese Acad Sci, Sch Nanosci & Engn, Beijing 100049, Peoples R China
[3] Univ Sci & Technol Beijing, Sch Chem & Biol Engn, Beijing Key Lab Bioengn & Sensing Technol, Res Ctr Bioengn & Sensing Technol, Beijing 100083, Peoples R China
[4] Univ Sci & Technol Beijing, Beijing Municipal Key Lab New Energy Mat & Technol, Beijing 100083, Peoples R China
关键词
MXene; triboelectric nanogenerator; springstructure; fluid energy harvesting; water levelmonitoring; BODY;
D O I
10.1021/acsami.3c15558
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The introduction of two-dimensional materials with high capacitance that are dielectric into the triboelectric interface is critical for the development of a highly efficient triboelectric nanogenerator (TENG) due to its excellent electrical conductivity and versatile surface chemistry. This paper reports a spring-structured multilayer TENG (S-TENG), where a Nb2CTx MXene-PVDF composite was chosen as the triboelectric electrode for increasing the dielectric and surface charge density. The intense electrostatic interaction of the strong hydrogen bonds between anions on the MXene surface and hydrogen atoms of PVDF chains not only creates a dipole in responding to the applied electric field but also promotes the formation of a piezoelectric phase and induces a strong interface coupling effect. Consequently, an output power enhancement of 300% was shown in comparison with pure PVDF, and a spring-like design with a multilayer structure further increases the space utilization and contact area and presents an output voltage of 420 V, a current density of 1.47 mA/m(2), and a maximal output power density of 619 mW/m(2). In addition, the as-prepared S-TENG can serve as both a fluid energy harvester on an urban river and a real-time monitor to realize the automatic alarm of water level warning.
引用
收藏
页码:3406 / 3415
页数:10
相关论文
共 51 条
[41]   A new Mylar-based triboelectric energy harvester with an innovative design for mechanical energy harvesting applications [J].
Zargari, Siavash ;
Koozehkanani, Ziaddin Daie ;
Veladi, Hadi ;
Sobhi, Jafar ;
Rezania, Alireza .
ENERGY CONVERSION AND MANAGEMENT, 2021, 244
[42]   Understanding the Percolation Effect in Triboelectric Nanogenerator with Conductive Intermediate Layer [J].
Zhang, Binbin ;
Tian, Guo ;
Xiong, Da ;
Yang, Tao ;
Chun, Fengjun ;
Zhong, Shen ;
Lin, Zhiming ;
Li, Wen ;
Yang, Weiqing .
RESEARCH, 2021, 2021 (2021)
[43]   Harvesting Wind Energy by a Triboelectric Nanogenerator for an Intelligent High-Speed Train System [J].
Zhang, Chuguo ;
Liu, Yuebo ;
Zhang, Baofeng ;
Yang, Ou ;
Yuan, Wei ;
He, Lixia ;
Wei, Xuelian ;
Wang, Jie ;
Wang, Zhong Lin .
ACS ENERGY LETTERS, 2021, 6 (04) :1490-1499
[44]   Bifilar-Pendulum-Assisted Multilayer-Structured Triboelectric Nanogenerators for Wave Energy Harvesting [J].
Zhang, Chuguo ;
Zhou, Linglin ;
Cheng, Ping ;
Liu, Di ;
Zhang, Chunlei ;
Li, Xinyuan ;
Li, Shaoxin ;
Wang, Jie ;
Wang, Zhong Lin .
ADVANCED ENERGY MATERIALS, 2021, 11 (12)
[45]   Interaction of the human body with triboelectric nanogenerators [J].
Zhang, Renyun ;
Hummelgard, Magnus ;
Ortegren, Jonas ;
Olsen, Martin ;
Andersson, Henrik ;
Olin, Hakan .
NANO ENERGY, 2019, 57 :279-292
[46]   Highly sensitive, reliable and flexible pressure sensor based on piezoelectric PVDF hybrid film using MXene nanosheet reinforcement [J].
Zhao, Qiuying ;
Yang, Lu ;
Ma, Yizhou ;
Huang, Huajie ;
He, Haiyan ;
Ji, Hongli ;
Wang, Zhifeng ;
Qiu, Jinhao .
JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 886
[47]   A rotating tower-like triboelectric nanogenerator for ultrahigh charge density breakthrough [J].
Zhao, Tiancong ;
Niu, Bo ;
Liu, Boying ;
Li, Zhengyu ;
Yang, Wenzha ;
Xie, Guangci ;
Zhu, Yuanyao ;
Chen, Dan ;
Ma, Yong ;
Hu, Chao .
NANO ENERGY, 2023, 108
[48]   Structural Flexibility in Triboelectric Nanogenerators: A Review on the Adaptive Design for Self-Powered Systems [J].
Zhao, Zequan ;
Lu, Yin ;
Mi, Yajun ;
Meng, Jiajing ;
Cao, Xia ;
Wang, Ning .
MICROMACHINES, 2022, 13 (10)
[49]   Selection rules of triboelectric materials for direct-current triboelectric nanogenerator [J].
Zhao, Zhihao ;
Zhou, Linglin ;
Li, Shaoxin ;
Liu, Di ;
Li, Yanhong ;
Gao, Yikui ;
Liu, Yuebo ;
Dai, Yejing ;
Wang, Jie ;
Wang, Zhong Lin .
NATURE COMMUNICATIONS, 2021, 12 (01)
[50]   Engraved pattern spacer triboelectric nanogenerators for mechanical energy harvesting [J].
Zhong, Wei ;
Xu, Bingang ;
Gao, Yuanyuan .
NANO ENERGY, 2022, 92