Spring Design of Triboelectric Nanogenerator with MXene-Modified Interface for Fluid Energy Harvesting and Water Level Monitoring

被引:7
|
作者
Tao, Yang [1 ,2 ]
Xiang, Huijing [3 ,4 ]
Cao, Xia [1 ,2 ,3 ,4 ]
Wang, Ning [3 ,4 ]
机构
[1] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 101400, Peoples R China
[2] Univ Chinese Acad Sci, Sch Nanosci & Engn, Beijing 100049, Peoples R China
[3] Univ Sci & Technol Beijing, Sch Chem & Biol Engn, Beijing Key Lab Bioengn & Sensing Technol, Res Ctr Bioengn & Sensing Technol, Beijing 100083, Peoples R China
[4] Univ Sci & Technol Beijing, Beijing Municipal Key Lab New Energy Mat & Technol, Beijing 100083, Peoples R China
关键词
MXene; triboelectric nanogenerator; springstructure; fluid energy harvesting; water levelmonitoring; BODY;
D O I
10.1021/acsami.3c15558
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The introduction of two-dimensional materials with high capacitance that are dielectric into the triboelectric interface is critical for the development of a highly efficient triboelectric nanogenerator (TENG) due to its excellent electrical conductivity and versatile surface chemistry. This paper reports a spring-structured multilayer TENG (S-TENG), where a Nb2CTx MXene-PVDF composite was chosen as the triboelectric electrode for increasing the dielectric and surface charge density. The intense electrostatic interaction of the strong hydrogen bonds between anions on the MXene surface and hydrogen atoms of PVDF chains not only creates a dipole in responding to the applied electric field but also promotes the formation of a piezoelectric phase and induces a strong interface coupling effect. Consequently, an output power enhancement of 300% was shown in comparison with pure PVDF, and a spring-like design with a multilayer structure further increases the space utilization and contact area and presents an output voltage of 420 V, a current density of 1.47 mA/m(2), and a maximal output power density of 619 mW/m(2). In addition, the as-prepared S-TENG can serve as both a fluid energy harvester on an urban river and a real-time monitor to realize the automatic alarm of water level warning.
引用
收藏
页码:3406 / 3415
页数:10
相关论文
共 50 条
  • [1] A flexible PI/MXene triboelectric nanogenerator for energy harvesting and motion monitoring in table tennis
    Xu, Dazhong
    Ma, Xiaoxin
    Ma, Yong
    AIP ADVANCES, 2025, 15 (01)
  • [2] Triboelectric nanogenerator based on a moving bubble in liquid for mechanical energy harvesting and water level monitoring
    Li, Changzheng
    Liu, Xuyang
    Yang, Dafeng
    Liu, Zheng
    NANO ENERGY, 2022, 95
  • [3] Spring-assisted triboelectric nanogenerator for efficiently harvesting water wave energy
    Jiang, Tao
    Yao, Yanyan
    Xu, Liang
    Zhang, Limin
    Xiao, Tianxiao
    Wang, Zhong Lin
    NANO ENERGY, 2017, 31 : 560 - 567
  • [4] Beyond energy harvesting: a review on the critical role of MXene in triboelectric nanogenerator
    Zhao, Zequan
    Cao, Xia
    Wang, Ning
    ENERGY MATERIALS, 2024, 4 (03):
  • [5] Design of DC-Triboelectric Nanogenerator for Energy Harvesting
    Abdelrahim, Mohamed Omer Mahgoub
    Lee, Lini
    INTERNATIONAL JOURNAL OF TECHNOLOGY, 2022, 13 (06) : 1308 - 1316
  • [6] A triboelectric nanogenerator design for harvesting environmental mechanical energy from water mist
    Chen, Yun
    Kuang, Yicheng
    Shi, Dachuang
    Hou, Maoxiang
    Chen, Xin
    Jiang, Lelun
    Gao, Jian
    Zhang, Lanyu
    He, Yunbo
    Wong, Ching-Ping
    NANO ENERGY, 2020, 73
  • [7] Noncontact triboelectric nanogenerator for human motion monitoring and energy harvesting
    Xi, Yinhu
    Hua, Jing
    Shi, Yijun
    NANO ENERGY, 2020, 69
  • [8] A multifunctional triboelectric nanogenerator based on PDMS/ MXene for bio-mechanical energy harvesting and volleyball training monitoring
    Yang, Renwei
    HELIYON, 2024, 10 (11)
  • [9] A flat-structured triboelectric nanogenerator based on PDMS/MXene for mechanical energy harvesting boxing training monitoring
    Zhang, Hui
    Hao, Qingwei
    Liu, Haishan
    AIP ADVANCES, 2024, 14 (11)
  • [10] A flexible triboelectric nanogenerator based on PDA/MXene/NIPAM hydrogel for mechanical energy harvesting and basketball posture monitoring
    Chen, Tiangeng
    Liang, Xiao
    AIP ADVANCES, 2024, 14 (04)