Single domain soft ferromagnetic ferrofluid suitable for intratumoural magnetic hyperthermia

被引:4
作者
Duraisamy, Karthickraja [1 ]
Devaraj, Muthu [1 ]
Gangadharan, Ajithkumar [2 ]
Martirosyan, Karen S. [3 ]
Sahu, Niroj Kumar [4 ]
Manogaran, Prasath [5 ,6 ,7 ]
Kreedapathy, Girija Easwaradas [1 ]
机构
[1] Periyar Univ, Dept Phys, Salem 636011, Tamil Nadu, India
[2] Texas A&M Univ San Antonio, Dept Math Phys & Engn Sci, One Univ Way, San Antonio, TX 78224 USA
[3] Univ Texas Rio Grande Valley, Dept Phys & Astron, Brownsville, TX 78520 USA
[4] Vellore Inst Technol, Ctr Nanotechnol Res, Vellore 632014, Tamil Nadu, India
[5] Bharathiar Univ, Dept Biotechnol, Coimbatore 641046, Tamil Nadu, India
[6] Marshall Univ, Joan C Edwards Sch Med, Dept Clin & Translat Sci, Huntington, WV USA
[7] Saveetha Inst Med & Tech Sci SIMATS, Saveetha Sch Engn, Dept Appl Chem, Chennai 602105, Tamil Nadu, India
关键词
Single domain; Soft ferromagnetic; Hysteresis loss; Intratumoural hyperthermia; IRON-OXIDE NANOPARTICLES; HEATING EFFICIENCY; COFE2O4; NANOPARTICLES; PARTICLE HYPERTHERMIA; SIZE; ACID; NANOMATERIALS; FABRICATION; SURFACE; COBALT;
D O I
10.1016/j.colsurfa.2023.133049
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Magnetic hyperthermia is an effective modality for treating cancerous cells selectively at the intracellular level via proper administration, surface tagging and appropriate choice of magnetic nanoparticle. Also, achieving the therapeutic temperature with as much low concentration of nanoparticles, as possible, is desirable. Recently, ferromagnetic nanoparticles or ferrofluid are gaining attention as effective magnetic hyperthermia agents due to their enhanced heating potential under in vivo conditions. In the present work, we have fabricated citrate capped cobalt ferrite ferrofluid via a simple two-step process and investigated the physicochemical, magnetic and induction heating performance. The average size of the synthesized nanoparticle is 9 +/- 4.3 nm which is suitable for intracellular hyperthermia and has the advantage that it can be easily eliminated from the body through renal clearance. The M(T) measurement of the ferrofluid confirmed the soft ferromagnetic behavior. The induction heating potential of the ferrofluid prepared was tested at different concentrations (1, 2, 5 & 10 mg/ml), suspension medium and alternating magnetic fields (15, 30 & 45 kA/m) with a fixed frequency of 316 kHz. Under a viscous environment, 1 mg/ml sample subjected to 45 kA/m reached the hyperthermia temperature within 160 s and the specific loss power was found to be 297 W/g(Co+Fe). Hence, the synthesized ferrofluid is suitable for intratumoural hyperthermia.
引用
收藏
页数:11
相关论文
共 80 条
  • [1] Biocompatible Nanoclusters with High Heating Efficiency for Systemically Delivered Magnetic Hyperthermia
    Albarqi, Hassan A.
    Wong, Leon H.
    Schumann, Canan
    Sabei, Fahad Y.
    Korzun, Tetiana
    Li, Xiaoning
    Hansen, Mikkel N.
    Dhagat, Pallavi
    Moses, Abraham S.
    Taratula, Olena
    Taratula, Oleh
    [J]. ACS NANO, 2019, 13 (06) : 6383 - 6395
  • [2] Review on Recent Progress in Magnetic Nanoparticles: Synthesis, Characterization, and Diverse Applications
    Ali, Arbab
    Shah, Tufail
    Ullah, Rehmat
    Zhou, Pingfan
    Guo, Manlin
    Ovais, Muhammad
    Tan, Zhiqiang
    Rui, YuKui
    [J]. FRONTIERS IN CHEMISTRY, 2021, 9
  • [3] Magnetic nanoparticles for drug delivery
    Arruebo, Manuel
    Fernandez-Pacheco, Rodrigo
    Ibarra, M. Ricardo
    Santamaria, Jesus
    [J]. NANO TODAY, 2007, 2 (03) : 22 - 32
  • [4] Tailored super magnetic nanoparticles synthesized via template free hydrothermal technique
    Attallah, Olivia A.
    Girgis, E.
    Abdel-Mottaleb, Mohamed M. S. A.
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2016, 397 : 164 - 175
  • [5] Thermoseeds for interstitial magnetic hyperthermia: from bioceramics to nanoparticles
    Baeza, A.
    Arcos, D.
    Vallet-Regi, M.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2013, 25 (48)
  • [6] Critical Parameters to Improve Pancreatic Cancer Treatment Using Magnetic Hyperthermia: Field Conditions, Immune Response, and Particle Biodistribution
    Beola, Lilianne
    Grazu, Valeria
    Fernandez-Afonso, Yilian
    Fratila, Raluca M.
    de las Heras, Marcelo
    de la Fuente, Jesus M.
    Gutierrez, Lucia
    Asin, Laura
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (11) : 12982 - 12996
  • [7] Superparamagnetic ZnFe2O4 nanoparticles: The effect of Ca and Gd doping
    Bini, Marcella
    Tondo, Christian
    Capsoni, Doretta
    Mozzati, Maria Cristina
    Albini, Benedetta
    Galinetto, Pietro
    [J]. MATERIALS CHEMISTRY AND PHYSICS, 2018, 204 : 72 - 82
  • [8] BREZOVICH IA, 1984, CANCER RES, V44, P4752
  • [9] A Single Picture Explains Diversity of Hyperthermia Response of Magnetic Nanoparticles
    Conde-Leboran, Ivan
    Baldomir, Daniel
    Martinez-Boubeta, Carlos
    Chubykalo-Fesenko, Oksana
    Morales, Maria del Puerto
    Salas, Gorka
    Cabrera, David
    Camarero, Julio
    Teran, Francisco J.
    Serantes, David
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (27) : 15698 - 15706
  • [10] Phase Transformation of Superparamagnetic Iron Oxide Nanoparticles via Thermal Annealing: Implications for Hyperthermia Applications
    Crippa, Federica
    Rodriguez-Lorenzo, Laura
    Hua, Xiao
    Goris, Bart
    Bals, Sara
    Garitaonandia, Jose S.
    Balog, Sandor
    Burnand, David
    Hirt, Ann M.
    Haeni, Laetitia
    Lattuada, Marco
    Rothen-Rutishauser, Barbara
    Petri-Fink, Alke
    [J]. ACS APPLIED NANO MATERIALS, 2019, 2 (07) : 4462 - 4470