Fault detection and diagnosis in AHU system using deep learning approach

被引:7
|
作者
Masdoua, Yanis [1 ]
Boukhnifer, Moussa [1 ]
Adjallah, Kondo H. [1 ]
Benterki, Abdelmoudjib [2 ]
机构
[1] Univ Lorraine, LCOMS, F-57000 Metz, France
[2] ESTACA Engn Sch, F-78180 Montigny le Bretonneux, France
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2023年 / 360卷 / 17期
关键词
CLASSIFICATION; MODEL;
D O I
10.1016/j.jfranklin.2023.09.046
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Energy consumption in buildings increases with the failures of equipment involved in the energy exchange, and control networks in buildings. One of the ways to remedy this issue is to offer highperformance fault detection systems. This article proposes a Fault Detection and Diagnostics (FDD) system based on Convolutional Neural Network (CNN) and Long Term Short Memory (LSTM) neural networks, applied to an AHU and using an hybrid database containing data from simulation and realworld on an actual physical building. The proposed system is designed to effectively identify and categorize faults, whether they occur in the sensors or in the mechanical equipment responsible for critical functions such as heat exchanges, air transfer, and system control. The FDD system provides results with an overall accuracy of around 96.88 %.(c) 2023 The Franklin Institute. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:13574 / 13595
页数:22
相关论文
共 50 条
  • [31] A Deep Learning Approach to Diabetes Diagnosis
    Zhang, Zeyu
    Ahmed, Khandaker Asif
    Hasan, Md Rakibul
    Gedeon, Tom
    Hossain, Md Zakir
    RECENT CHALLENGES IN INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2024, PT I, 2024, 2144 : 87 - 99
  • [32] An efficient approach for automatic crack detection using deep learning
    Usharani, Shola
    Gayathri, R.
    Kovvuri, Uday Surya Deveswar Reddy
    Nivas, Maddukuri
    Md, Abdul Quadir
    Tee, Kong Fah
    Sivaraman, Arun Kumar
    INTERNATIONAL JOURNAL OF STRUCTURAL INTEGRITY, 2024, 15 (03) : 434 - 460
  • [33] An Efficient Approach for Skin Disease Detection using Deep Learning
    Alam, Jihan
    2021 IEEE ASIA-PACIFIC CONFERENCE ON COMPUTER SCIENCE AND DATA ENGINEERING (CSDE), 2021,
  • [34] Image deep learning in fault diagnosis of mechanical equipment
    Wang, Chuanhao
    Sun, Yongjian
    Wang, Xiaohong
    JOURNAL OF INTELLIGENT MANUFACTURING, 2024, 35 (06) : 2475 - 2515
  • [35] Fault detection from PV images using hybrid deep learning model
    Yousif, Hayder
    Al-Milaji, Zahraa
    SOLAR ENERGY, 2024, 267
  • [36] A Hierarchical Deep Domain Adaptation Approach for Fault Diagnosis of Power Plant Thermal System
    Wang, Xiaoxia
    He, Haibo
    Li, Lusi
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (09) : 5139 - 5148
  • [37] Mammogram Learning System for Breast Cancer Diagnosis Using Deep Learning SVM
    Jayandhi, G.
    Jasmine, J. S. Leena
    Joans, S. Mary
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2022, 40 (02): : 491 - 503
  • [38] A diagnosis model for detection and classification of diabetic retinopathy using deep learning
    Syed, Saba Raoof
    Durai, M. A. Saleem
    NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS, 2023, 12 (01):
  • [39] Transmission lines Fault Detection and Classification Using Deep Learning Neural Network
    Rajashekar, Jangili
    Yadav, Anamika
    2022 SECOND INTERNATIONAL CONFERENCE ON ADVANCES IN ELECTRICAL, COMPUTING, COMMUNICATION AND SUSTAINABLE TECHNOLOGIES (ICAECT), 2022,
  • [40] A diagnosis model for detection and classification of diabetic retinopathy using deep learning
    Saba Raoof Syed
    Saleem Durai M A
    Network Modeling Analysis in Health Informatics and Bioinformatics, 12