Strain-rich high-entropy perovskite oxide of (La0.8Sr0.2)(Mn0.2Fe0.2Cr0.2Co0.2Ni0.2)O3 for durable and effective catalysis of oxygen redox reactions in lithium-oxygen battery

被引:8
作者
Liu, Zhanpeng [1 ]
Xu, Haoyang [1 ]
Wang, Xinxiang [1 ]
Tian, Guilei [1 ]
Du, Dayue [1 ]
Shu, Chaozhu [1 ]
机构
[1] Chengdu Univ Technol, Coll Mat & Chem & Chem Engn, 1 Dongsanlu, Chengdu 610059, Sichuan, Peoples R China
来源
BATTERY ENERGY | 2024年 / 3卷 / 02期
基金
中国国家自然科学基金;
关键词
electrode material; high entropy oxide; Li-O-2; battery; oxygen electrode reaction; strain effect; NANOPARTICLES; ELECTRODE;
D O I
10.1002/bte2.20230053
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Despite their great promise as high-energy-density alternatives to Li-ion batteries, the extensive use of lithium-oxygen (Li-O-2) batteries is constrained by the slow kinetics of both the oxygen evolution reaction and oxygen reduction reaction. To increase the overall performance of Li-O(2 )batteries, it is essential to increase the efficiency of oxygen electrode reactions by constructing effective electrocatalysts. As a high-efficiency catalyst for Li-O-2 batteries, high entropy perovskite oxide (La0.8Sr0.2)(Mn0.2Fe0.2Cr0.2Co0.2Ni0.2)O-3 (referred to as LS(MFCCN)O-3) is designed and investigated in this article. The introduction of dissimilar metals in LS(MFCCN)O3 has the potential to cause lattice deformation, thereby enhancing electron transfer between transition metal ions and facilitating the formation of numerous oxygen vacancies. This feature is advantageous for the reversible production and breakdown of discharge product Li2O2. Consequently, the Li-O-2 battery utilizing LS(MFCCN)O3 as a catalyst achieves an impressive discharge capacity of 17,078.2 mAh g(-1) and exhibits an extended cycling life of 435 cycles. This study offers a useful method for adjusting the catalytic performance of perovskite oxides toward oxygen redox reactions in Li-O-2 batteries.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Medium-entropy perovskite Pr0.4Ba0.2Ca0.2La0.2Co0.2Fe0.8O3 as a promising bifunctional electrocatalyst for electrochemical energy conversion device
    Li, Ping
    Niu, Yifang
    Du, Jianwei
    Yang, Qiyu
    Sun, Zesi
    Yan, Fei
    Tong, Xiaofeng
    Wang, Ligang
    CHEMICAL ENGINEERING SCIENCE, 2024, 293
  • [22] ZnCo2O4/LaAlO3 transparent pn junction towards enhanced photoelectric response and stability via interfacial homogeneous high entropy oxide perovskite La(Cu0.2Co0.2Ni0.2Fe0.2Mn0.2)O3 QDs
    He, Bo
    Huang, Yujia
    Wang, Rui
    Wang, Dingwei
    Jia, Chengyu
    Cao, Jun
    Shi, Lei
    Pan, Jiaqi
    Zhao, Zhiguo
    Li, Chaorong
    CHEMICAL ENGINEERING JOURNAL, 2025, 511
  • [23] Highly enhanced dielectric performances in PVDF-based nanocomposites filled with (Eu0.2Bi0.2Y0.2La0.2Cr0.2)2O3 high-entropy oxide nanofibers
    Jing, Lu
    Li, Weili
    Gao, Chang
    Li, Menglu
    He, Jun
    POLYMER, 2022, 262
  • [24] Boosting the CO2 electrolysis performance using high entropy stable La0.2Pr0.2Sm0.2Sr0.2Ca0.2Fe0.9Ni0.1O3-δ electrode for symmetric solid oxide electrolysis cells
    Chen, Zhengpeng
    Wang, Jiajia
    Li, Mingfei
    Dong, Jiangbo
    Xu, Renci
    Cheng, Jinsong
    Xiong, Kai
    Rao, Mumin
    Chen, Chuangting
    Shen, Chenjin
    Li, Xiaowei
    Ling, Yihan
    FUEL, 2024, 359
  • [25] High-entropy oxide (Fe0.2Zn0.2Co0.2Ni0.2Cu0.2)Fe2O4: An efficient and stable spinel-type electrocatalyst for H2O2 production in alkaline media
    Danyang, Li
    Liping, Sun
    Qiang, Li
    Tian, Xia
    Lihua, Huo
    Hui, Zhao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 913
  • [26] Structural, Mo<spacing diaeresis>ssbauer and magnetic study of (Mn0.2Co0.2Ni0.2Cu0.2X0.2) Fe2O4 (X=Fe, Mg) spinel high-entropy oxides fabricated via reactive flash sintering
    Manchon-Gordon, A. F.
    Almanza-Vergara, G. E.
    Molina-Molina, S.
    Perejon, A.
    Blazquez, J. S.
    Sanchez-Jimenez, P. E.
    Perez-Maqueda, L. A.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2024, 44 (14)
  • [27] High-Entropy Sn0.8(Co0.2Mg0.2Mn0.2Ni0.2Zn0.2)2.2O4 Conversion- Alloying Anode Material for Li-Ion Cells: Altered Lithium Storage Mechanism, Activation of Mg, and Origins of the Improved Cycling Stability
    Mozdzierz, Maciej
    Swierczek, Konrad
    Dabrowa, Juliusz
    Gajewska, Marta
    Hanc, Anna
    Feng, Zhenhe
    Cieslak, Jakub
    Kadziolka-Gawel, Mariola
    Plotek, Justyna
    Marzec, Mateusz
    Kulka, Andrzej
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (37) : 42057 - 42070
  • [28] Synthesis and characterization of La0.8Sr0.2Co0.8Fe0.2O3 nanoparticles for intermediate-low temperature solid oxide fuel cell cathodes
    Ding, C.
    Lin, H.
    Sato, K.
    Hashida, T.
    WATER DYNAMICS, 2008, 987 : 35 - +
  • [29] Oxygen Exchange in MIEC Perovskite Oxide La0.6Sr0.4Co0.2Fe0.8O3-δ: Kinetic and Equilibrium Parameters and Their Interrelation
    Guskov, Rostislav. D.
    Popov, Mikhail. P.
    Gongola, Marko. I.
    Kovalev, Ivan. V.
    Chizhik, Stanislav. A.
    Nemudry, Alexander. P.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (12) : 4997 - 5010
  • [30] Oxygen reduction reaction in Pr2NiO4+δ/Ce0.9Gd0.1O1.95 and La0.6Sr0.4Co0.2Fe0.8O3−δ/La0.8Sr0.2Ga0.8Mg0.2O2.80 half cells: an electrochemical study
    Benoît Philippeau
    Fabrice Mauvy
    Clément Nicollet
    Sébastien Fourcade
    Jean Claude Grenier
    Journal of Solid State Electrochemistry, 2015, 19 : 871 - 882