Towards physics-informed explainable machine learning and causal models for materials research

被引:9
作者
Ghosh, Ayana [1 ]
机构
[1] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA
关键词
Machine learning; Explainable machine learning; Causal models; Materials design; Materials discovery; Perovskites; Molecules; DRUG DISCOVERY; AFLOW LIBRARY; CATALYSIS; GRAPHENE; DESIGN; PREDICTION; STABILITY; CHEMISTRY; DYNAMICS; PUBCHEM;
D O I
10.1016/j.commatsci.2023.112740
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
From emergent material descriptions to estimation of properties stemming from structures to optimization of process parameters for achieving best performance - all key facets of materials science and related fields have experienced tremendous growth with the introduction of data-driven models. This gradual progression goes at par with developments of machine learning workflows, from purely data-driven shallow models to those that are well-capable in encoding more complex graphs, symbolic representations, invariances, and positional embeddings. This perspective aims at summarizing strategic aspects of such transitions while providing insights into the requirements of bringing in explainable, interpretable predictive models, and causal learning to aid in materials design and discovery. Although the focus remains on a variety of functional materials by providing a handful of case studies, the applications of such integrated methodologies are universal to facilitate fundamental understandings of materials physics while enabling autonomous experiments.
引用
收藏
页数:8
相关论文
共 145 条
[21]   New frontiers for the materials genome initiative [J].
de Pablo, Juan J. ;
Jackson, Nicholas E. ;
Webb, Michael A. ;
Chen, Long-Qing ;
Moore, Joel E. ;
Morgan, Dane ;
Jacobs, Ryan ;
Pollock, Tresa ;
Schlom, Darrell G. ;
Toberer, Eric S. ;
Analytis, James ;
Dabo, Ismaila ;
DeLongchamp, Dean M. ;
Fiete, Gregory A. ;
Grason, Gregory M. ;
Hautier, Geoffroy ;
Mo, Yifei ;
Rajan, Krishna ;
Reed, Evan J. ;
Rodriguez, Efrain ;
Stevanovic, Vladan ;
Suntivich, Jin ;
Thornton, Katsuyo ;
Zhao, Ji-Cheng .
NPJ COMPUTATIONAL MATERIALS, 2019, 5 (1)
[22]   The NOMAD laboratory: from data sharing to artificial intelligence [J].
Draxl, Claudia ;
Scheffler, Matthias .
JOURNAL OF PHYSICS-MATERIALS, 2019, 2 (03)
[23]   Doping of Cr in Graphene Using Electron Beam Manipulation for Functional Defect Engineering [J].
Dyck, Ondrej ;
Yoon, Mina ;
Zhang, Lizhi ;
Lupini, Andrew R. ;
Swett, Jacob L. ;
Jesse, Stephen .
ACS APPLIED NANO MATERIALS, 2020, 3 (11) :10855-10863
[24]   Doping transition-metal atoms in graphene for atomic-scale tailoring of electronic, magnetic, and quantum topological properties [J].
Dyck, Ondrej ;
Zhang, Lizhi ;
Yoon, Mina ;
Swett, Jacob L. ;
Hensley, Dale ;
Zhang, Cheng ;
Rack, Philip D. ;
Fowlkes, Jason D. ;
Lupini, Andrew R. ;
Jesse, Stephen .
CARBON, 2021, 173 (173) :205-214
[25]   Electron-beam introduction of heteroatomic Pt-Si structures in graphene [J].
Dyck, Ondrej ;
Zhang, Cheng ;
Rack, Philip D. ;
Fowlkes, Jason D. ;
Sumpter, Bobby ;
Lupini, Andrew R. ;
Kalinin, Sergei, V ;
Jesse, Stephen .
CARBON, 2020, 161 :750-757
[26]   Building Structures Atom by Atom via Electron Beam Manipulation [J].
Dyck, Ondrej ;
Kim, Songkil ;
Jimenez-Izal, Elisa ;
Alexandrova, Anastassia N. ;
Kalinin, Sergei V. ;
Jesse, Stephen .
SMALL, 2018, 14 (38)
[27]   Exploiting machine learning for end-to-end drug discovery and development [J].
Ekins, Sean ;
Puhl, Ana C. ;
Zorn, Kimberley M. ;
Lane, Thomas R. ;
Russo, Daniel P. ;
Klein, Jennifer J. ;
Hickey, Anthony J. ;
Clark, Alex M. .
NATURE MATERIALS, 2019, 18 (05) :435-441
[28]  
Elise Walker J.A.A, 2023, arXiv
[29]   Computational design of molecules for an all-quinone redox flow battery [J].
Er, Suleyman ;
Suh, Changwon ;
Marshak, Michael P. ;
Aspuru-Guzik, Alan .
CHEMICAL SCIENCE, 2015, 6 (02) :885-893
[30]  
Eric Schwenker V.K., 2021, arXiv