Comprehensive evaluation of machine learning models for predicting ship energy consumption based on onboard sensor data

被引:16
|
作者
Fan, Ailong [1 ,2 ,4 ]
Wang, Yingqi [2 ]
Yang, Liu [2 ]
Tu, Xiaolong [3 ]
Yang, Jian [3 ]
Shu, Yaqing [1 ]
机构
[1] Wuhan Univ Technol, State Key Lab Maritime Technol & Safety, Wuhan, Peoples R China
[2] Wuhan Univ Technol, Sch Transportat & Logist Engn, Wuhan, Peoples R China
[3] Wuhan Univ Technol, Sch Naval Architecture Ocean & Energy Power Engn, Wuhan, Peoples R China
[4] Academician Workstat COSCO SHIPPING Grp Ltd, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Ship energy consumption; Prediction model; Machine learning; Onboard sensor data; Performance evaluation;
D O I
10.1016/j.ocecoaman.2023.106946
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
Machine learning models for predicting ship energy consumption are built and their influencing factors are investigated. First, data collected from a real ship is preprocessed. Six machine learning methods are used to establish the prediction models of ship fuel consumption, and the performance of models is evaluated by Mean Absolute Error, Coefficient of Determination and training time. Then, by analysing the correlation and impor-tance of the features, it's studied whether the model established complies with the laws of physics. Finally, the factors affecting the prediction performance of machine learning models are analysed. The results show that Random Forest and Extreme Gradient Boosting are the most suitable algorithms for ship fuel consumption prediction. Data preprocessing, data normalisation, training sample size, model type, ship operating conditions, as well as the thermotechnical parameters of main engine have impact on the prediction performance. In particular, when taking the thermotechnical parameters into consideration, R2 is increased by 0.32%, MAE is reduced by 5.0%.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Machine learning model for predicting long-term energy consumption in buildings
    Aseel Hussien
    Aref Maksoud
    Aisha Al-Dahhan
    Ahmed Abdeen
    Thar Baker
    Discover Internet of Things, 5 (1):
  • [32] Sampling Strategy Analysis of Machine Learning Models for Energy Consumption Prediction
    Wu, Zeqing
    Chu, Weishen
    2021 THE 9TH IEEE INTERNATIONAL CONFERENCE ON SMART ENERGY GRID ENGINEERING (SEGE 2021), 2021, : 77 - 81
  • [33] A machine-learning ensemble model for predicting energy consumption in smart homes
    Priyadarshini, Ishaani
    Sahu, Sandipan
    Kumar, Raghvendra
    Taniar, David
    INTERNET OF THINGS, 2022, 20
  • [34] Predicting Site Energy Usage Intensity Using Machine Learning Models
    Njimbouom, Soualihou Ngnamsie
    Lee, Kwonwoo
    Lee, Hyun
    Kim, Jeongdong
    SENSORS, 2023, 23 (01)
  • [35] Comparative Evaluation and Comprehensive Analysis of Machine Learning Models for Regression Problems
    Sekeroglu, Boran
    Ever, Yoney Kirsal
    Dimililer, Kamil
    Al-Turjman, Fadi
    DATA INTELLIGENCE, 2022, 4 (03) : 620 - 652
  • [36] Predicting energy consumption in multiple buildings using machine learning for improving energy efficiency and sustainability
    Anh-Duc Pham
    Ngoc-Tri Ngo
    Thu Ha Truong Thi
    Nhat-To Huynh
    Ngoc-Son Truong
    JOURNAL OF CLEANER PRODUCTION, 2020, 260
  • [37] Machine learning based renewable energy generation and energy consumption forecasting
    Talwariya, Akash
    Singh, Pushpendra
    Jobanputra, Jalpa H.
    Kolhe, Mohan Lal
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2023, 45 (02) : 3266 - 3278
  • [38] Machine Learning-based Sensor Data Forecasting for Precision Evaluation of Environmental Sensing
    Kempelis, Arturs
    Narigina, Marta
    Osadcijs, Eduards
    Patlins, Antons
    Romanovs, Andrejs
    2023 IEEE 10TH JUBILEE WORKSHOP ON ADVANCES IN INFORMATION, ELECTRONIC AND ELECTRICAL ENGINEERING, AIEEE, 2023,
  • [39] Data fusion and machine learning for ship fuel efficiency modeling: Part III - Sensor data and meteorological data
    Du, Yuquan
    Chen, Yanyu
    Li, Xiaohe
    Schonborn, Alessandro
    Sun, Zhuo
    COMMUNICATIONS IN TRANSPORTATION RESEARCH, 2022, 2
  • [40] Potential of Machine Learning for Predicting Sleep Disorders: A Comprehensive Analysis of Regression and Classification Models
    Alazaidah, Raed
    Samara, Ghassan
    Aljaidi, Mohammad
    Haj Qasem, Mais
    Alsarhan, Ayoub
    Alshammari, Mohammed
    DIAGNOSTICS, 2024, 14 (01)