Comprehensive evaluation of machine learning models for predicting ship energy consumption based on onboard sensor data

被引:16
|
作者
Fan, Ailong [1 ,2 ,4 ]
Wang, Yingqi [2 ]
Yang, Liu [2 ]
Tu, Xiaolong [3 ]
Yang, Jian [3 ]
Shu, Yaqing [1 ]
机构
[1] Wuhan Univ Technol, State Key Lab Maritime Technol & Safety, Wuhan, Peoples R China
[2] Wuhan Univ Technol, Sch Transportat & Logist Engn, Wuhan, Peoples R China
[3] Wuhan Univ Technol, Sch Naval Architecture Ocean & Energy Power Engn, Wuhan, Peoples R China
[4] Academician Workstat COSCO SHIPPING Grp Ltd, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Ship energy consumption; Prediction model; Machine learning; Onboard sensor data; Performance evaluation;
D O I
10.1016/j.ocecoaman.2023.106946
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
Machine learning models for predicting ship energy consumption are built and their influencing factors are investigated. First, data collected from a real ship is preprocessed. Six machine learning methods are used to establish the prediction models of ship fuel consumption, and the performance of models is evaluated by Mean Absolute Error, Coefficient of Determination and training time. Then, by analysing the correlation and impor-tance of the features, it's studied whether the model established complies with the laws of physics. Finally, the factors affecting the prediction performance of machine learning models are analysed. The results show that Random Forest and Extreme Gradient Boosting are the most suitable algorithms for ship fuel consumption prediction. Data preprocessing, data normalisation, training sample size, model type, ship operating conditions, as well as the thermotechnical parameters of main engine have impact on the prediction performance. In particular, when taking the thermotechnical parameters into consideration, R2 is increased by 0.32%, MAE is reduced by 5.0%.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Predicting Brain Age Using Machine Learning Algorithms: A Comprehensive Evaluation
    Beheshti, Iman
    Ganaie, M. A.
    Paliwal, Vardhan
    Rastogi, Aryan
    Razzak, Imran
    Tanveer, M.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (04) : 1432 - 1440
  • [22] Predicting industrial building energy consumption with statistical and machine-learning models informed by physical system parameters
    Kapp, Sean
    Choi, Jun-Ki
    Hong, Taehoon
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2023, 172
  • [23] MACHINE LEARNING MODELS FOR PREDICTING CUTTINGS CONCENTRATION IN ANNULUS BASED ON FLOWLOOP EXPERIMENTAL DATA
    Purwandari, Sartika D.
    Lund, Bjornar
    Hovda, Sigve
    PROCEEDINGS OF ASME 2023 42ND INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2023, VOL 9, 2023,
  • [24] Ship Classification Based on AIS Data and Machine Learning Methods
    Huang, I-Lun
    Lee, Man-Chun
    Nieh, Chung-Yuan
    Huang, Juan-Chen
    ELECTRONICS, 2024, 13 (01)
  • [25] Predicting student success in MOOCs: a comprehensive analysis using machine learning models
    Althibyani, Hosam A.
    PeerJ Computer Science, 2024, 10
  • [26] Predicting student success in MOOCs: a comprehensive analysis using machine learning models
    Althibyani, Hosam A.
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [27] A comprehensive comparative analysis of machine learning models for predicting heating and cooling loads
    Abdelkader, Eslam Mohammed
    Al-Sakkaf, Abobakr
    Ahmed, Reem
    DECISION SCIENCE LETTERS, 2020, 9 (03) : 409 - 420
  • [28] Evaluation of Machine Learning Models for a Chipless RFID Sensor Tag
    Rather, Nadeem
    Simorangkir, Roy B. V. B.
    Buckley, John
    O'Flynn, Brendan
    Tedesco, Salvatore
    2023 17TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, EUCAP, 2023,
  • [29] Predicting Unemployment with Machine Learning Based on Registry Data
    Viljanen, Markus
    Pahikkala, Tapio
    RESEARCH CHALLENGES IN INFORMATION SCIENCE (RCIS 2020), 2020, 385 : 352 - 368
  • [30] Predicting Energy Consumption in Residential Buildings Using Advanced Machine Learning Algorithms
    Dinmohammadi, Fateme
    Han, Yuxuan
    Shafiee, Mahmood
    ENERGIES, 2023, 16 (09)