Contributions to the ergodic theory of hyperbolic flows: unique ergodicity for quasi-invariant measures and equilibrium states for the time-one map

被引:2
|
作者
Carrasco, Pablo D. [1 ]
Rodriguez-Hertz, Federico [2 ]
机构
[1] Univ Fed Minas Gerais, Inst Ciencias Exatas, Avda Presidente Antonio Carlos 6627, BR-3127090 Belo Horizonte, MG, Brazil
[2] Penn State Univ, Dept Math, 227 McAllister Bldg,Univ Pk, State Coll, PA 16802 USA
关键词
D O I
10.1007/s11856-023-2588-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the horocyclic flow corresponding to a (topologically mixing) Anosov flow or diffeomorphism, and establish the uniqueness of transverse quasi-invariant measures with Holder Jacobians. In the same setting, we give a precise characterization of the equilibrium states of the hyperbolic system, showing that existence of a family of Radon measures on the horocyclic foliation such that any probability (invariant or not) having conditionals given by this family, necessarily is the unique equilibrium state of the system.
引用
收藏
页码:589 / 612
页数:24
相关论文
共 4 条