THE DIRICHLET PROBLEM FOR POSSIBLY SINGULAR ELLIPTIC EQUATIONS WITH DEGENERATE COERCIVITY

被引:5
|
作者
Durastanti, Riccardo [1 ]
Oliva, Francescantonio [2 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat & Applicazioni R Caccioppoli, Via Cintia, I-80126 Naples, Italy
[2] Sapienza Univ Roma, Dipartimento Sci Base & Applicate Ingn, Via Antonio Scarpa 16, I-00161 Rome, Italy
关键词
EXISTENCE; GROWTH;
D O I
10.57262/ade029-0506-339
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deal with existence, uniqueness and regularity of non-negative solutions to a Dirichlet problem for equations as -div (|del u|(p-2)del u/(1 + u)(theta(p-1))) = h(u)f in Omega, where Omega is an open bounded subset of R-N (N >= 2), p > 1, theta >= 0, f >= 0 belongs to a suitable Lebesgue space and h is a continuous, nonnegative function which may blow up at zero and it is bounded at infinity.
引用
收藏
页码:339 / 388
页数:50
相关论文
共 50 条