Auditing Unfair Biases in CNN-Based Diagnosis of Alzheimer's Disease

被引:1
作者
Vien Ngoc Dang [1 ]
Casamitjana, Adria [2 ]
Starmans, Martijn P. A. [1 ,3 ]
Martin-Isla, Carlos [1 ]
Hernandez-Gonzalez, Jeronimo [1 ]
Lekadir, Karim [1 ]
机构
[1] Univ Barcelona, Dept Matemat & Informat, Fac Matemat & Informat, Barcelona, Spain
[2] Univ Politecn Cataluna, Dept Teoria Senyal & Comunicac, Barcelona, Spain
[3] Erasmus MC, Dept Radiol & Nucl Med, Rotterdam, Netherlands
来源
CLINICAL IMAGE-BASED PROCEDURES, FAIRNESS OF AI IN MEDICAL IMAGING, AND ETHICAL AND PHILOSOPHICAL ISSUES IN MEDICAL IMAGING, CLIP 2023, FAIMI 2023, EPIMI 2023 | 2023年 / 14242卷
关键词
fairness; bias; medical imaging; convolutional neural networks; Alzheimer's disease;
D O I
10.1007/978-3-031-45249-9_17
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Convolutional neural networks (CNN), while effective in medical diagnostics, have shown concerning biases against underrepresented patient groups. In this study, we provide an in-depth exploration of these biases in the realm of image-based Alzheimer's disease (AD) diagnosis using state-of-the-art CNNs, building upon and extending prior investigations. We dissect performance-based and calibrationbased biases across patient subgroups differentiated by sex, ethnicity, age, educational qualifications, and APOE4 status. Our findings reveal substantial disparities in model performance and calibration, underscoring the challenges intersectional identities impose. Such biases highlight the importance of fairness analysis in fostering equitable AI applications in the AD domain. Appropriate mitigation actions should be carried out to ensure that, those who need it, receive healthcare attention independently from the subgroup they belong to.
引用
收藏
页码:172 / 182
页数:11
相关论文
共 27 条
[1]   Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain [J].
Avants, B. B. ;
Epstein, C. L. ;
Grossman, M. ;
Gee, J. C. .
MEDICAL IMAGE ANALYSIS, 2008, 12 (01) :26-41
[2]   Identification of Alzheimer's disease using a convolutional neural network model based on T1-weighted magnetic resonance imaging [J].
Bae, Jong Bin ;
Lee, Subin ;
Jung, Wonmo ;
Park, Sejin ;
Kim, Weonjin ;
Oh, Hyunwoo ;
Han, Ji Won ;
Kim, Grace Eun ;
Kim, Jun Sung ;
Kim, Jae Hyoung ;
Kim, Ki Woong .
SCIENTIFIC REPORTS, 2020, 10 (01)
[3]  
Buolamwini J., 2018, C FAIRNESS ACCOUNTAB, P77
[4]   Effects of APOE-ε4 allele load on brain morphology in a cohort of middle-aged healthy individuals with enriched genetic risk for Alzheimer's disease [J].
Cacciaglia, Raffaele ;
Luis Molinuevo, Jose ;
Falcon, Carles ;
Brugulat-Serrat, Anna ;
Sanchez-Benavides, Gonzalo ;
Gramunt, Nina ;
Esteller, Manel ;
Moran, Sebastian ;
Minguillon, Carolina ;
Fauria, Karine ;
Domingo Gispert, Juan .
ALZHEIMERS & DEMENTIA, 2018, 14 (07) :902-912
[5]  
Chen IY, 2018, ADV NEUR IN, V31
[6]   Age Correction in Dementia - Matching to a Healthy Brain [J].
Dukart, Juergen ;
Schroeter, Matthias L. ;
Mueller, Karsten .
PLOS ONE, 2011, 6 (07)
[7]   Trustworthy artificial intelligence in Alzheimer's disease: state of the art, opportunities, and challenges [J].
El-Sappagh, Shaker ;
Alonso-Moral, Jose M. ;
Abuhmed, Tamer ;
Ali, Farman ;
Bugarin-Diz, Alberto .
ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (10) :11149-11296
[8]   2022 Alzheimer's disease facts and figures [J].
Gaugler, Joseph ;
James, Bryan ;
Johnson, Tricia ;
Reimer, Jessica ;
Solis, Michele ;
Weuve, Jennifer ;
Buckley, Rachel F. ;
Hohman, Timothy J. .
ALZHEIMERS & DEMENTIA, 2022, 18 (04) :700-789
[9]  
Gruber S.G., 2022, NeurIPS 2022: Advances in Neural Information Processing Systems
[10]  
Guo CA, 2017, PR MACH LEARN RES, V70