Deep learning parametric response mapping from inspiratory chest CT scans: a new approach for small airway disease screening

被引:10
作者
Chen, Bin [1 ,2 ]
Liu, Ziyi [3 ,4 ,5 ]
Lu, Jinjuan [6 ]
Li, Zhihao [3 ,4 ,5 ]
Kuang, Kaiming [7 ,8 ]
Yang, Jiancheng [7 ,9 ]
Wang, Zengmao [3 ,4 ,5 ]
Sun, Yingli [1 ,2 ]
Du, Bo [3 ,4 ,5 ]
Qi, Lin [1 ,2 ]
Li, Ming [1 ,2 ]
机构
[1] Fudan Univ, Huadong Hosp, Dept Radiol, 221,Yanan West Rd,Jingan Temple St, Shanghai, Peoples R China
[2] Zhang Guozhen Small Pulm Nodules Diag & Treatment, Shanghai, Peoples R China
[3] Wuhan Univ, Sch Comp Sci, Wuhan, Hubei, Peoples R China
[4] Wuhan Univ, Artificial Intelligence Inst, Wuhan, Hubei, Peoples R China
[5] Hubei Key Lab Multimedia & Network Commun Engn, Wuhan, Hubei, Peoples R China
[6] Shanghai Geriatr Med Ctr, Dept Radiol, Shanghai, Peoples R China
[7] Dianei Technol, Shanghai, Peoples R China
[8] Univ Calif San Diego, La Jolla, CA USA
[9] Swiss Fed Inst Technol Lausanne EPFL, Comp Vis Lab, Lausanne, Switzerland
关键词
Computed tomography; Deep learning; Parametric response mapping; Small airways; OBSTRUCTIVE PULMONARY-DISEASE; LUNG-FUNCTION; SMOKERS; EMPHYSEMA; COPD; ASSOCIATION; DYSANAPSIS; SYMPTOMS;
D O I
10.1186/s12931-023-02611-2
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
Objectives Parametric response mapping (PRM) enables the evaluation of small airway disease (SAD) at the voxel level, but requires both inspiratory and expiratory chest CT scans. We hypothesize that deep learning PRM from inspiratory chest CT scans can effectively evaluate SAD in individuals with normal spirometry.Methods We included 537 participants with normal spirometry, a history of smoking or secondhand smoke exposure, and divided them into training, tuning, and test sets. A cascaded generative adversarial network generated expiratory CT from inspiratory CT, followed by a UNet-like network predicting PRM using real inspiratory CT and generated expiratory CT. The performance of the prediction is evaluated using SSIM, RMSE and dice coefficients. Pearson correlation evaluated the correlation between predicted and ground truth PRM. ROC curves evaluated predicted PRMfSAD (the volume percentage of functional small airway disease, fSAD) performance in stratifying SAD.Results Our method can generate expiratory CT of good quality (SSIM 0.86, RMSE 80.13 HU). The predicted PRM dice coefficients for normal lung, emphysema, and fSAD regions are 0.85, 0.63, and 0.51, respectively. The volume percentages of emphysema and fSAD showed good correlation between predicted and ground truth PRM (|r| were 0.97 and 0.64, respectively, p < 0.05). Predicted PRMfSAD showed good SAD stratification performance with ground truth PRMfSAD at thresholds of 15%, 20% and 25% (AUCs were 0.84, 0.78, and 0.84, respectively, p < 0.001).Conclusion Our deep learning method generates high-quality PRM using inspiratory chest CT and effectively stratifies SAD in individuals with normal spirometry.
引用
收藏
页数:12
相关论文
共 45 条
[1]   Prostate cancer classification using radiomics and machine learning on mp-MRI validated using co-registered histology [J].
Alfano, Ryan ;
Bauman, Glenn S. ;
Gomez, Jose A. ;
Gaed, Mena ;
Moussa, Madeleine ;
Chin, Joseph ;
Pautler, Stephen ;
Ward, Aaron D. .
EUROPEAN JOURNAL OF RADIOLOGY, 2022, 156
[2]   Physiological tests of small airways function in diagnosing asthma: a systematic review [J].
Almeshari, Mohammed A. ;
Alobaidi, Nowaf Y. ;
Edgar, Ross G. ;
Stockley, James ;
Sapey, Elizabeth .
BMJ OPEN RESPIRATORY RESEARCH, 2020, 7 (01)
[3]   Inhomogeneous lung attenuation at thin-section CT: Diagnostic value of expiratory scans [J].
Arakawa, H ;
Webb, WR ;
McCowin, M ;
Katsou, G ;
Lee, KN ;
Seitz, RF .
RADIOLOGY, 1998, 206 (01) :89-94
[4]   VoxelMorph: A Learning Framework for Deformable Medical Image Registration [J].
Balakrishnan, Guha ;
Zhao, Amy ;
Sabuncu, Mert R. ;
Guttag, John ;
Dalca, Adrian, V .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (08) :1788-1800
[5]   Radiographic Graft Surveillance in Lung Transplantation Prognostic Role of Parametric Response Mapping [J].
Belloli, Elizabeth A. ;
Gu, Tian ;
Wang, Yizhuo ;
Vummidi, Dharshan ;
Lyu, Dennis M. ;
Combs, Michael P. ;
Chughtai, Aamer ;
Murray, Susan ;
Galban, Craig J. ;
Lama, Vibha N. .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2021, 204 (08) :967-976
[6]   Association between Functional Small Airway Disease and FEV1 Decline in Chronic Obstructive Pulmonary Disease [J].
Bhatt, Surya P. ;
Soler, Xavier ;
Wang, Xin ;
Murray, Susan ;
Anzueto, Antonio R. ;
Beaty, Terri H. ;
Boriek, Aladin M. ;
Casaburi, Richard ;
Criner, Gerard J. ;
Diaz, Alejandro A. ;
Dransfield, Mark T. ;
Curran-Everett, Douglas ;
Galban, Craig J. ;
Hoffman, Eric A. ;
Hogg, James C. ;
Kazerooni, Ella A. ;
Kim, Victor ;
Kinney, Gregory L. ;
Lagstein, Amir ;
Lynch, David A. ;
Make, Barry J. ;
Martinez, Fernando J. ;
Ramsdell, Joe W. ;
Reddy, Rishindra ;
Ross, Brian D. ;
Rossiter, Harry B. ;
Steiner, Robert M. ;
Strand, Matthew J. ;
van Beek, Edwin J. R. ;
Wan, Emily S. ;
Washko, George R. ;
Wells, J. Michael ;
Wendt, Chris H. ;
Wise, Robert A. ;
Silverman, Edwin K. ;
Crapo, James D. ;
Bowler, Russell P. ;
Han, MeiLan K. .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2016, 194 (02) :178-184
[7]   Deep neural network analyses of spirometry for structural phenotyping of chronic obstructive pulmonary disease [J].
Bodduluri, Sandeep ;
Nakhmani, Arie ;
Reinhardt, Joseph M. ;
Wilson, Carla G. ;
McDonald, Merry-Lynn ;
Rudraraju, Ramaraju ;
Jaeger, Byron C. ;
Bhakta, Nirav R. ;
Castaldi, Peter J. ;
Sciurba, Frank C. ;
Zhang, Chengcui ;
Bangalore, Purushotham V. ;
Bhatt, Surya P. .
JCI INSIGHT, 2020, 5 (13)
[8]   Parametric Response Mapping Monitors Temporal Changes on Lung CT Scans in the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) [J].
Boes, Jennifer L. ;
Hoff, Benjamin A. ;
Bule, Maria ;
Johnson, Timothy D. ;
Rehemtulla, Alnawaz ;
Chamberlain, Ryan ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
Martinez, Fernando J. ;
Han, Meilan K. ;
Ross, Brian D. ;
Galban, Craig J. .
ACADEMIC RADIOLOGY, 2015, 22 (02) :186-194
[9]   Ambient Air Pollution and Dysanapsis: Associations with Lung Function and Chronic Obstructive Pulmonary Disease in the Canadian Cohort Obstructive Lung Disease Study [J].
Bourbeau, Jean ;
Doiron, Dany ;
Biswas, Sharmistha ;
Smith, Benjamin M. ;
Benedetti, Andrea ;
Brook, Jeffrey R. ;
Aaron, Shawn D. ;
Chapman, Kenneth R. ;
Hernandez, Paul ;
Maltais, Francois ;
Marciniuk, Darcy D. ;
O'Donnell, Denis ;
Sin, Don D. ;
Walker, Brandie ;
Dsilva, Liesel ;
Nadeau, Gilbert ;
Coats, Valerie ;
Compton, Chris ;
Miller, Bruce E. ;
Tan, Wan C. .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2022, 206 (01) :44-55
[10]   A Deep Learning Approach to Visualize Aortic Aneurysm Morphology Without the Use of Intravenous Contrast Agents [J].
Chandrashekar, Anirudh ;
Handa, Ashok ;
Lapolla, Pierfrancesco ;
Shivakumar, Natesh ;
Uberoi, Raman ;
Grau, Vicente ;
Lee, Regent .
ANNALS OF SURGERY, 2023, 277 (02) :E449-E459