Positivity-Preserving Discontinuous Galerkin Methods on Triangular Meshes for Macroscopic Pedestrian Flow Models

被引:1
|
作者
Yang, L. [1 ,2 ]
Liang, H. [3 ]
Du, J. [1 ,2 ]
Wong, S. C. [4 ,5 ]
机构
[1] Yanqi Lake Beijing Inst Math Sci & Applicat, Beijing, Peoples R China
[2] Tsinghua Univ, Yau Math Sci Ctr, Beijing, Peoples R China
[3] Tongji Univ, Coll Transportat Engn, Shanghai, Peoples R China
[4] Univ Hong Kong, Dept Civil Engn, Hong Kong, Peoples R China
[5] Guangdong Hong Kong Macau Joint Lab Smart Cities, Hong Kong, Peoples R China
关键词
DYNAMIC CONTINUUM MODEL; FINITE-ELEMENT-METHOD; CONSERVATION-LAWS; TRAFFIC FLOW; CROWD DYNAMICS; APPROXIMATIONS; EQUATIONS; SAFETY; WAVES;
D O I
10.1155/2023/7245723
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The macroscopic models for solving the pedestrian flow problem can be generally classified into two categories as follows: first-order continuum models and high-order continuum models. In first-order continuum models, the density satisfies the mass conservation law, the speed is defined by a flow-density relationship, and the desired directional motion of pedestrians is determined by an Eikonal-type equation. In contrast, in high-order models, the velocity is governed by the momentum conservation law. In this study, we summarize existing first-order and high-order models and rewrite them in the form of unified scalar or system hyperbolic conservation laws. Next, we apply high-order discontinuous Galerkin methods with a positivity-preserving limiter on unstructured triangular meshes to solve the conservation law and a second-order fast-sweeping scheme to solve the Eikonal equations. Our method can efficiently model real-life complex computational regions and avoid nonphysical solutions and simulation blow-ups. Finally, numerical examples are presented to demonstrate the accuracy and effectiveness of the proposed solution algorithm. The numerical results validate the reliability of the proposed numerical method and highlight the advantages of triangular meshes.
引用
收藏
页数:19
相关论文
共 50 条