Zero temperature limits;
Countable Markov Shifts;
Ergodic optimization;
Quotients of potentials;
Thermodynamic formalism;
EQUILIBRIUM STATES;
SYMBOLIC DYNAMICS;
PHASE-TRANSITIONS;
D O I:
10.1007/s10955-023-03106-6
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
In this article we study ergodic optimization for quotients of functions, generalizing the classical setting in which only one function is considered. We study (non-compact) countable Markov shifts and construct a framework which allow us to prove that a sequence of equilibrium measures has an accumulation point which maximizes the integral of the quotients among the (non-compact) space of invariant measures. We provide applications of this theory to study classic ergodic optimization problems for suspension flows defined on countable Markov shifts.
机构:
IPICYT, Div Control & Sistemas Dinam, Camino Presa San Jose 2055,Lomas 4a Secc, San Luis Potosi, San Luis Potosi, MexicoUniv Catolica Norte, Dept Matemat, Ave Angamos 0610, Antofagasta, Chile
机构:
Univ Sao Paulo, IME, Dept Math, Rua Matao 1010, Sao Paulo, BrazilUniv Sao Paulo, IME, Dept Math, Rua Matao 1010, Sao Paulo, Brazil
Freire, Ricardo
Vargas, Victor
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, IME, Dept Math, Rua Matao 1010, Sao Paulo, Brazil
Antonio Narino Univ, Fac Educ, Cl 22 Sur 12D-81, Bogota, ColombiaUniv Sao Paulo, IME, Dept Math, Rua Matao 1010, Sao Paulo, Brazil