Porous 3D Printable Hydrogels

被引:9
|
作者
Baur, Eva [1 ]
Hirsch, Matteo [1 ]
Amstad, Esther [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Mat, Soft Mat Lab, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
3D printing; hydrogels; porosity; diffusion; ANNIVERSARY; NETWORKS; POROSITY; SCAFFOLD; GELATIN; TOUGH;
D O I
10.1002/admt.202201763
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Hydrogels are interconnected, polymeric networks filled with water. Their inherent responsiveness to different stimuli, including the presence of salt, solvents, or, depending on their composition, changes in pH or temperature, renders them attractive for actuation and delivery purposes. Yet, the limited diffusivity within hydrogels hampers an efficient exchange of reagents such as active ingredients or solutes. The diffusivity can be increased if pores are incorporated into hydrogels. However, these pores typically weaken hydrogels, preventing their use for load-bearing applications. This work reports a method to controllably introduce open pores with diameters of 10 s of nanometers into hydrogels whose mechanical properties are still remarkable, with compression moduli above 100 kPa. Importantly, these hydrogels can be 3D printed, thereby opening up possibilities to tune the pore size within hydrogels from the 10 s of nm up to the cm size range. This work leverages the 3D printability of this material to locally vary the degree of porosity while maintaining mechanical properties that enable facile handling of the integral samples. Thereby, this work introduces new opportunities to size-selectively infiltrate different substances at well-defined locations.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] 3D Printable Self-Adhesive and Self-Healing Ionotronic Hydrogels for Wearable Healthcare Devices
    Seong, Minho
    Kondaveeti, Stalin
    Choi, Geonjun
    Kim, Somi
    Kim, Jaeil
    Kang, Minsu
    Jeong, Hoon Eui
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (08) : 11042 - 11052
  • [42] 3D printable ionic conductive hydrogels with super stretch and self-adhesion performances for flexible sensors
    Xu, Xinqian
    Jiang, Pan
    Liu, Di
    Lyu, Yang
    Shi, Xinyan
    Ji, Zhongyin
    Wang, Xiaolong
    GIANT, 2024, 17
  • [43] A 3D Printable Hand Exoskeleton for the Haptic Exploration of Virtual 3D Scenes
    Goetzelmann, Timo
    10TH ACM INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS (PETRA 2017), 2017, : 63 - 66
  • [44] Interface contact behavior of 3D printed porous surfaces
    Heimbrook, Amanda
    Kelly, Cambre
    Gall, Ken
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 21 : 4115 - 4126
  • [45] 3D Printed Porous Cellulose Nanocomposite Hydrogel Scaffolds
    Sultan, Sahar
    Mathew, Aji P.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2019, (146):
  • [46] Ultrasensitive Wearable Strain Sensors of 3D Printing Tough and Conductive Hydrogels
    Wang, Jilong
    Liu, Yan
    Su, Siheng
    Wei, Junhua
    Rahman, Syed Ehsanur
    Ning, Fuda
    Christopher, Gordon
    Cong, Weilong
    Qiu, Jingjing
    POLYMERS, 2019, 11 (11)
  • [47] Lithography-based 3D printing of hydrogels
    Dhand, Abhishek P.
    Davidson, Matthew D.
    Burdick, Jason A.
    NATURE REVIEWS BIOENGINEERING, 2025, 3 (02): : 108 - 125
  • [48] Chitosan hydrogels in 3D printing for biomedical applications
    Rajabi, Mina
    McConnell, Michelle
    Cabral, Jaydee
    Ali, M. Azam
    CARBOHYDRATE POLYMERS, 2021, 260 (260)
  • [49] 3D Printing of Hydrogels for Stretchable Ionotronic Devices
    Ge, Gang
    Wang, Qian
    Zhang, Yi-Zhou
    Alshareef, Husam N.
    Dong, Xiaochen
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (52)
  • [50] 3D printing of hydroxyapatite/tricalcium phosphate scaffold with hierarchical porous structure for bone regeneration
    Li, Xiangjia
    Yuan, Yuan
    Liu, Luyang
    Leung, Yuen-Shan
    Chen, Yiyu
    Guo, Yuxing
    Chai, Yang
    Chen, Yong
    BIO-DESIGN AND MANUFACTURING, 2020, 3 (01) : 15 - 29