Sea Ice Melt Pond Fraction Derived From Sentinel-2 Data: Along the MOSAiC Drift and Arctic-Wide

被引:14
作者
Niehaus, Hannah [1 ]
Spreen, Gunnar [1 ]
Birnbaum, Gerit [2 ]
Istomina, Larysa [2 ]
Jaekel, Evelyn [3 ]
Linhardt, Felix [4 ]
Neckel, Niklas [2 ]
Fuchs, Niels [5 ]
Nicolaus, Marcel [2 ]
Sperzel, Tim [3 ]
Tao, Ran [2 ]
Webster, Melinda [6 ]
Wright, Nicholas [7 ]
机构
[1] Univ Bremen, Inst Environm Phys, Bremen, Germany
[2] Alfred Wegener Inst Bremerhaven, Helmholtz Ctr Polar & Marine Res, Bremerhaven, Germany
[3] Univ Leipzig, Fac Phys & Earth Sci, Leipzig, Germany
[4] Univ Kiel, Dept Geog, Kiel, Germany
[5] Univ Hamburg, Inst Oceanog, Hamburg, Germany
[6] Univ Washington, Polar Sci Ctr, Appl Phys Lab, Seattle, WA USA
[7] Dartmouth Coll, Thayer Sch Engn, Hanover, NH USA
基金
欧盟地平线“2020”; 美国国家科学基金会;
关键词
melt ponds; MOSAiC; Sentinel-2; ALBEDO RETRIEVAL; MERIS DATA; VALIDATION; EVOLUTION; SURFACE; AERIAL; MODEL;
D O I
10.1029/2022GL102102
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Melt ponds forming on Arctic sea ice in summer significantly reduce the surface albedo and impact the heat and mass balance of the sea ice. Therefore, their areal coverage, which can undergo rapid change, is crucial to monitor. We present a revised method to extract melt pond fraction (MPF) from Sentinel-2 satellite imagery, which is evaluated by MPF products from higher-resolution satellite and helicopter-borne imagery. The analysis of melt pond evolution during the MOSAiC campaign in summer 2020, shows a split of the Central Observatory (CO) into a level ice and a highly deformed ice part, the latter of which exhibits exceptional early melt pond formation compared to the vicinity. Average CO MPFs are 17% before and 23% after the major drainage. Arctic-wide analysis of MPF for years 2017-2021 shows a consistent seasonal cycle in all regions and years.
引用
收藏
页数:10
相关论文
共 49 条
  • [1] Classification of Sea Ice Summer Melt Features in High-Resolution IceBridge Imagery
    Buckley, Ellen M.
    Farrell, Sinead L.
    Duncan, Kyle
    Connor, Laurence N.
    Kuhn, John M.
    Dominguez, RoseAnne T.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2020, 125 (05)
  • [2] Dorn W., 2018, Geosci. Model Dev. Discuss. [preprint], DOI [10.5194/gmd-2018-278, DOI 10.5194/GMD-2018-278]
  • [3] Hydraulic controls of summer Arctic pack ice albedo
    Eicken, H
    Grenfell, TC
    Perovich, DK
    Richter-Menge, JA
    Frey, K
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2004, 109 (C8) : C080071 - 12
  • [4] Tracer studies of pathways and rates of meltwater transport through Arctic summer sea ice
    Eicken, H
    Krouse, HR
    Kadko, D
    Perovich, DK
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2002, 107 (C10)
  • [5] Incorporation of a physically based melt pond scheme into the sea ice component of a climate model
    Flocco, Daniela
    Feltham, Daniel L.
    Turner, Adrian K.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2010, 115
  • [6] FUCHS NA, 1964, MECHANICS AEROSOLS
  • [7] Grenfell T.C., 1977, J GLACIOL, V18, P445, DOI [10.3189/S0022143000021122, DOI 10.3189/S0022143000021122]
  • [8] Melt pond distribution and geometry in high Arctic sea ice derived from aerial investigations
    Huang, W.
    Lu, P.
    Lei, R.
    Xie, H.
    Li, Z.
    [J]. ANNALS OF GLACIOLOGY, 2016, 57 (73) : 105 - 118
  • [9] Level-ice melt ponds in the Los Alamos sea ice model, CICE
    Hunke, Elizabeth C.
    Hebert, David A.
    Lecomte, Olivier
    [J]. OCEAN MODELLING, 2013, 71 : 26 - 42
  • [10] Immerz S, 2021, MOSAiC Extended Acknowledgement, DOI [10.5281/ zenodo.5541624, DOI 10.5281/ZENODO.5541624]