Quasi-Double Diagonally Dominant H-Tensors and the Estimation Inequalities for the Spectral Radius of Nonnegative Tensors

被引:1
作者
Wang, Xincun [1 ]
Lv, Hongbin [2 ]
机构
[1] Eastern Liaoning Univ, Teachers Coll, Dandong 118003, Peoples R China
[2] Beihua Univ, Sch Math & Stat, Jilin 132013, Peoples R China
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 02期
关键词
quasi-double diagonally dominant H-tensor; M-tensor; decision condition; nonnegative tensor; spectral radius; estimation inequality; PERRON-FROBENIUS THEOREM; EIGENVALUES;
D O I
10.3390/sym15020439
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we study two classes of quasi-double diagonally dominant tensors and prove they are H-tensors. Numerical examples show that two classes of H-tensors are mutually exclusive. Thus, we extend the decision conditions of H-tensors. Based on these two classes of tensors, two estimation inequalities for the upper and lower bounds for the spectral radius of nonnegative tensors are obtained.
引用
收藏
页数:16
相关论文
共 21 条
[1]  
Chang KC, 2008, COMMUN MATH SCI, V6, P507, DOI 10.4310/CMS.2008.v6.n2.a12
[2]   Nonnegative matrix and tensor factorization [J].
Cichocki, Andrzej ;
Zdunek, Rafal ;
Amari, Shun-Ichi .
IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (01) :142-145
[3]   M-tensors and nonsingular M-tensors [J].
Ding, Weiyang ;
Qi, Liqun ;
Wei, Yimin .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (10) :3264-3278
[4]   Perron-Frobenius theorem for nonnegative multilinear forms and extensions [J].
Friedland, S. ;
Gaubert, S. ;
Han, L. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (02) :738-749
[5]  
Hord R.A., 1985, MATRIX ANAL
[6]   On determinants and eigenvalue theory of tensors [J].
Hu, Shenglong ;
Huang, Zheng-Hai ;
Ling, Chen ;
Qi, Liqun .
JOURNAL OF SYMBOLIC COMPUTATION, 2013, 50 :508-531
[7]   Lower and upper bounds for H-eigenvalues of even order real symmetric tensors [J].
Jin, Hongwei ;
Kannan, M. Rajesh ;
Bai, Minru .
LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (07) :1402-1416
[8]   Some properties of strong H-tensors and general H-tensors [J].
Kannan, M. Rajesh ;
Shaked-Monderer, Naomi ;
Berman, Abraham .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 476 :42-55
[9]   Tensor Decompositions and Applications [J].
Kolda, Tamara G. ;
Bader, Brett W. .
SIAM REVIEW, 2009, 51 (03) :455-500
[10]   Eigenvalue bounds of third-order tensors via the minimax eigenvalue of symmetric matrices [J].
Li, Shigui ;
Chen, Zhen ;
Li, Chaoqian ;
Zhao, Jianxing .
COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03)