Mechanical properties assessment of a 3D printed composite under torsional and perpendicular stress

被引:3
作者
Parreira Lovo, Joao Fiore [1 ]
Neto, Vicente Gerlin [2 ,3 ]
Piedade, Lucas Pereira [4 ]
Massa, Renan Cesar [3 ]
Pintao, Carlos Alberto [4 ]
Foschini, Cesar Renato [5 ]
Fortulan, Carlos Alberto [1 ]
机构
[1] Univ Sao Paulo, Dept Engn Mecan, Escola Engn Sao Carlos, Sao Carlos, Brazil
[2] Inst Fed Educ Ciencia & Tecnol Sao Paulo, Campus Birigui, Sao Paulo, Brazil
[3] Univ Estadual Paulista, Fac Engn, Dept Engn Mecan, Campus Bauru, Bauru, SP, Brazil
[4] Univ Estadual Paulista, Fac Ciencias, Dept Fis, Campus Bauru, Bauru, SP, Brazil
[5] Sao Paulo State Univ UNESP, Bauru Sch Engn, Dept Mech Engn, Bauru, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Additive manufacturing; Fused deposition modeling; FDM; Material extrusion; Mechanical properties; Torsion test; DESIGN;
D O I
10.1108/RPJ-03-2022-0067
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Purpose This paper aims to evaluate the resin infiltration influence on the mechanical properties of components 3D printed by the material extrusion-based additive manufacturing (AM), also known as fused deposition modeling and commonly uses the acrylonitrile butadiene styrene (ABS) as depositing material. Improvements in their mechanical properties are desirable due failure resulting from the extrusion process. In this way, resin infiltration is considered a candidate solution to enhance 3D printed components' strength. Design/methodology/approach The mechanical properties of AM samples produced with and without the resin infiltration were assessed under torsion, tensile and flexural stresses. Torsional tests are rarely found applied for this case, an alternative torsion test developed by one of the authors was used. The torsion modulus (G) is obtained without the Poisson's ratio, which is usually unknown for recently made composites. Scanning electron microscopy was also done to verify the resin infiltration on the samples. Findings Results demonstrated that the resin infiltration on ABS can improve the mechanical properties of samples compared to non-infiltrated. The tensile and bending strength increased more than 6%. Both Young's and torsion modulus also presented a significant increase. The samples did not present any considerable change in their weight property. Originality/value This paper discusses on resin infiltration on print ABS, as to produce a composite material, enhancing ABS properties without gaining weight. This paper also used the torsion modulus instead of the common approach of bringing only tensile and flexure strength.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [21] A comprehensive review on fillers and mechanical properties of 3D printed polymer composites
    Arora, Nishtha
    Dua, Sachin
    Singh, Vivek K.
    Singh, Shailesh Kumar
    Senthilkumar, T.
    MATERIALS TODAY COMMUNICATIONS, 2024, 40
  • [22] Exploring Tunable Torsional Mechanical Properties of 3D-Printed Tubular Metamaterials
    Zhang, Zhennan
    Liu, Lei
    Usta, Fatih
    Chen, Yanyu
    ADVANCED ENGINEERING MATERIALS, 2024, 26 (09)
  • [23] Superior compressive properties of 3D printed plate lattice mechanical metamaterials
    Hu, Jingdan
    Tan, Alvin T. L.
    Chen, Hui
    Hu, Xiao
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2022, 231
  • [24] Mechanical Properties of Textile-Reinforced Composites with a 3D Printed Core
    Szary, Jakub
    Barburski, Marcin
    Swiniarski, Jacek
    FIBRES & TEXTILES IN EASTERN EUROPE, 2023, 31 (04) : 38 - 45
  • [25] Mechanical Properties of Specimens 3D Printed with Virgin and Recycled Polylactic Acid
    Anderson, Isabelle
    3D PRINTING AND ADDITIVE MANUFACTURING, 2017, 4 (02) : 110 - 115
  • [26] Enhancing Mechanical Properties of Polymer 3D Printed Parts
    Amza, Catalin Gheorghe
    Zapciu, Aurelian
    Constantin, George
    Baciu, Florin
    Vasile, Mihai Ion
    POLYMERS, 2021, 13 (04) : 1 - 18
  • [27] Effects of micro particle reinforcement on mechanical properties of 3D printed parts
    Canti, Ebubekir
    Aydin, Mustafa
    RAPID PROTOTYPING JOURNAL, 2018, 24 (01) : 171 - 176
  • [28] Mechanical properties of 3D printed polycaprolactone honeycomb structure
    Zhang, Pengfei
    Arceneaux, Donald Joseph
    Khattab, Ahmed
    JOURNAL OF APPLIED POLYMER SCIENCE, 2018, 135 (12)
  • [29] THE ROLE OF OVERFLOW ON THE MECHANICAL PROPERTIEs OF 3D PRINTED PLA
    Axinte, M.
    Chicet, D. L.
    Chelariu, R.
    Comaneci, R. I.
    ARCHIVES OF METALLURGY AND MATERIALS, 2024, 69 (02) : 599 - 606
  • [30] Annealing effect on mechanical properties of 3D printed composites
    Valvez, S.
    Silva, A. P.
    Reis, P. N. B.
    Berto, F.
    4TH INTERNATIONAL CONFERENCE ON STRUCTURAL INTEGRITY (ICSI 2021), 2022, 37 : 738 - 745