Measuring and Architecting System Resilience Through Trade Study Analysis
被引:1
|
作者:
Veit, Daniel J.
论文数: 0引用数: 0
h-index: 0
机构:
George Washington Univ, Dept Engn Management & Syst Engn, Washington, DC 20052 USAGeorge Washington Univ, Dept Engn Management & Syst Engn, Washington, DC 20052 USA
Veit, Daniel J.
[1
]
Mazzuchi, Thomas A.
论文数: 0引用数: 0
h-index: 0
机构:
George Washington Univ, Dept Engn Management & Syst Engn, Washington, DC 20052 USAGeorge Washington Univ, Dept Engn Management & Syst Engn, Washington, DC 20052 USA
Mazzuchi, Thomas A.
[1
]
Sarkani, Shahram
论文数: 0引用数: 0
h-index: 0
机构:
George Washington Univ, Dept Engn Management & Syst Engn, Washington, DC 20052 USAGeorge Washington Univ, Dept Engn Management & Syst Engn, Washington, DC 20052 USA
Sarkani, Shahram
[1
]
机构:
[1] George Washington Univ, Dept Engn Management & Syst Engn, Washington, DC 20052 USA
来源:
IEEE SYSTEMS JOURNAL
|
2023年
/
17卷
/
01期
关键词:
Resilience;
Measurement;
Fault tolerance;
Sensitivity analysis;
Markov processes;
Electric shock;
Costs;
Autonomous systems;
design optimization;
resilience;
systems engineering;
systems system resilience;
COMMON-CAUSE;
DESIGNING RESILIENT;
FRAMEWORK;
METRICS;
PERFORMANCE;
ATTACKS;
ENHANCE;
D O I:
10.1109/JSYST.2022.3163139
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
Resilience is a dimension of trade study analysis that must be accounted for in early conceptual system design because it can influence cost, reliability, performance, and overall lifecycle cost. Traditional trade studies, which focus on risk, safety, and costs aspects analysis are no longer sufficient because they only account for predicted and known disruptions. This article proposes a practical and implementable methodology for measuring, predicting, and architecting system resilience during conceptual design that considers both known and unknown disruptions. This article extends the current literature by motivating the resilience curve using a Markov process, verifying resilience with empirical data, and incorporating the interaction between subsystems using common cause failure with the binomial failure rate. A verified simulation model is used as a predictive analysis tool and applied to an unmanned surface vehicle case study.
机构:
George Washington Univ, Dept Elect & Comp Engn, Washington, DC 20052 USATexas State Univ, Ingram Sch Engn, Elect Engn Dept, San Marcos, TX 78666 USA
机构:
Univ New England, UNE Business Sch, Armidale, NSW 2351, AustraliaUniv New England, UNE Business Sch, Armidale, NSW 2351, Australia
Villano, Renato A.
Magcale-Macandog, Damasa B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Philippines Banos, Inst Biol Sci, Laguna, PhilippinesUniv New England, UNE Business Sch, Armidale, NSW 2351, Australia
Magcale-Macandog, Damasa B.
Acosta, Lilibeth A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Philippines Banos, Dept Community & Environm Resource Planning, Coll Human Ecol, Laguna, Philippines
Global Green Growth Inst, Thought Leadership Div, Seoul, South KoreaUniv New England, UNE Business Sch, Armidale, NSW 2351, Australia
Acosta, Lilibeth A.
Tran, Carolyn-Dung Thi Thanh
论文数: 0引用数: 0
h-index: 0
机构:
Univ New England, UNE Business Sch, Armidale, NSW 2351, Australia
Int Coll Management, Sydney, NSW, AustraliaUniv New England, UNE Business Sch, Armidale, NSW 2351, Australia
Tran, Carolyn-Dung Thi Thanh
Eugenio, Elena A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Philippines Banos, Inst Biol Sci, Laguna, PhilippinesUniv New England, UNE Business Sch, Armidale, NSW 2351, Australia
Eugenio, Elena A.
Macandog, Paula Beatrice M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Philippines Banos, Inst Biol Sci, Laguna, PhilippinesUniv New England, UNE Business Sch, Armidale, NSW 2351, Australia