Randers metrics based on deformations by gradient winds

被引:3
作者
Aldea, Nicoleta [1 ]
Kopacz, Piotr [2 ]
Wolak, Robert [3 ]
机构
[1] Transilvania Univ Brasov, Fac Math & Comp Sci, Brasov, Romania
[2] Gdynia Maritime Univ, Fac Nav, Gdynia, Poland
[3] Jagiellonian Univ, Fac Math & Comp Sci, Krakow, Poland
关键词
Gradient vector field; Randers metric; Zermelo navigation; Locally dually flat metrics; FLAT; APPROXIMATION; GEOMETRY;
D O I
10.1007/s10998-022-00464-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the deformations of Riemannian metrics, in particular Hessian metrics, by Zermelo's navigation under the action of the weak gradient winds. Various descriptions of the resulting Randers metrics are given in relation to other special classes of Finsler metrics, e.g., projectively flat, locally dually flat. We prove that the resulting Randers metric obtained from perturbation by a conformal gradient wind is locally dually flat if and only if the background Riemannian metric is homothetic with the Euclidean metric. The inverse problem answers the question, when a given Randers metric comes from a Hessian metric and a gradient vector field through the Zermelo deformation. Some relevant examples are indicated at the end.
引用
收藏
页码:266 / 280
页数:15
相关论文
共 50 条
[31]   On the left invariant Randers and Matsumoto metrics of Berwald type on 3-dimensional Lie groups [J].
Moghaddam, H. R. Salimi .
MONATSHEFTE FUR MATHEMATIK, 2015, 177 (04) :649-658
[32]   On the left invariant Randers and Matsumoto metrics of Berwald type on 3-dimensional Lie groups [J].
H. R. Salimi Moghaddam .
Monatshefte für Mathematik, 2015, 177 :649-658
[33]   Non-Berwaldian Randers metrics of Douglas type on four-dimensional hypercomplex Lie groups [J].
Hosseini M. ;
Salimi Moghaddam H.R. .
Rendiconti del Circolo Matematico di Palermo Series 2, 2018, 67 (3) :539-545
[34]   Automorphisms and Deformations of Conformally Kahler, Einstein-Maxwell Metrics [J].
Lahdili, Abdellah .
JOURNAL OF GEOMETRIC ANALYSIS, 2019, 29 (01) :542-568
[35]   On Flag Curvature and Homogeneous Geodesics of Left Invariant Randers Metrics on the Semi-Direct Product a ⊕p r [J].
Ebrahimi, Mahnaz ;
Latifi, Dariush .
JOURNAL OF LIE THEORY, 2019, 29 (03) :619-627
[36]   A Region-Based Randers Geodesic Approach for Image Segmentation [J].
Chen, Da ;
Mirebeau, Jean-Marie ;
Shu, Huazhong ;
Cohen, Laurent D. .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (02) :349-391
[37]   Deformations of Constant Scalar Curvature Sasakian Metrics and K-Stability [J].
van Coevering, Craig ;
Tipler, Carl .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (22) :11566-11604
[38]   A Region-Based Randers Geodesic Approach for Image Segmentation [J].
Da Chen ;
Jean-Marie Mirebeau ;
Huazhong Shu ;
Laurent D. Cohen .
International Journal of Computer Vision, 2024, 132 (2) :349-391
[39]   Gradient Yamabe and Gradient m-Quasi Einstein Metrics on Three-dimensional Cosymplectic Manifolds [J].
De, Uday Chand ;
Chaubey, Sudhakar K. ;
Suh, Young Jin .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (03)
[40]   Certain paracontact metrics satisfying gradient ρ-Ricci-Bourguignon almost solitons [J].
Dey, Santu ;
Ali, Akram .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2025, 22 (03)