Randers metrics based on deformations by gradient winds

被引:3
|
作者
Aldea, Nicoleta [1 ]
Kopacz, Piotr [2 ]
Wolak, Robert [3 ]
机构
[1] Transilvania Univ Brasov, Fac Math & Comp Sci, Brasov, Romania
[2] Gdynia Maritime Univ, Fac Nav, Gdynia, Poland
[3] Jagiellonian Univ, Fac Math & Comp Sci, Krakow, Poland
关键词
Gradient vector field; Randers metric; Zermelo navigation; Locally dually flat metrics; FLAT; APPROXIMATION; GEOMETRY;
D O I
10.1007/s10998-022-00464-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the deformations of Riemannian metrics, in particular Hessian metrics, by Zermelo's navigation under the action of the weak gradient winds. Various descriptions of the resulting Randers metrics are given in relation to other special classes of Finsler metrics, e.g., projectively flat, locally dually flat. We prove that the resulting Randers metric obtained from perturbation by a conformal gradient wind is locally dually flat if and only if the background Riemannian metric is homothetic with the Euclidean metric. The inverse problem answers the question, when a given Randers metric comes from a Hessian metric and a gradient vector field through the Zermelo deformation. Some relevant examples are indicated at the end.
引用
收藏
页码:266 / 280
页数:15
相关论文
共 50 条
  • [1] Randers metrics based on deformations by gradient winds
    Nicoleta Aldea
    Piotr Kopacz
    Robert Wolak
    Periodica Mathematica Hungarica, 2023, 86 : 266 - 280
  • [2] On Homogeneous Randers Metrics
    Sadighi, Akbar
    Toomanian, Megerdich
    Najafi, Behzad
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2021, 14 (01): : 217 - 225
  • [3] On weakly stretch Randers metrics
    Chen, Guangzu
    Liu, Lihong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 514 (01)
  • [4] ON WEAKLY STRETCH RANDERS METRICS
    Tayebi, Akbar
    Ghasemi, Asma
    Sabzevari, Mehdi
    MATEMATICKI VESNIK, 2021, 73 (03): : 174 - 182
  • [5] On dually flat Randers metrics
    Yu, Changtao
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 : 146 - 155
  • [6] On generalized Einstein Randers metrics
    Tayebi, Akbar
    Nankali, Ali
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2015, 12 (10)
  • [7] On Ricci tensors of Randers metrics
    Tayebi, A.
    Peyghan, E.
    JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (11) : 1665 - 1670
  • [8] Cohomogeneity One Randers Metrics
    Li, Jifu
    Hu, Zhiguang
    Deng, Shaoqiang
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2016, 59 (03): : 575 - 584
  • [9] On projectively related randers metrics
    Shen, Yibing
    Yu, Yaoyong
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2008, 19 (05) : 503 - 520
  • [10] ON RANDERS METRICS OF QUADRATIC RIEMANN CURVATURE
    Li, Benling
    Shen, Zhongmin
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2009, 20 (03) : 369 - 376