Systematic literature review: Quantum machine learning and its applications

被引:44
作者
Peral-Garcia, David [1 ]
Cruz-Benito, Juan [2 ]
Garcia-Penalvo, Francisco Jose [3 ]
机构
[1] Univ Salamanca, Fac Sci, Expert Syst & Applicat Lab ESALAB, Plaza Caidos S-N, Salamanca 37008, Spain
[2] IBM TJ Watson Res Ctr, IBM Quantum, Yorktown Hts, NY 10598 USA
[3] Univ Salamanca, Res Inst Educ Sci, Dept Comp & Automat, GRIAL Res Grp, Paseo Canalejas 169, Salamanca 37008, Spain
关键词
Quantum machine learning; Quantum computing; Systematic literature review; NEURAL-NETWORKS; MODEL;
D O I
10.1016/j.cosrev.2024.100619
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Quantum physics has changed the way we understand our environment, and one of its branches, quantum mechanics, has demonstrated accurate and consistent theoretical results. Quantum computing is the process of performing calculations using quantum mechanics. This field studies the quantum behavior of certain subatomic particles (photons, electrons, etc.) for subsequent use in performing calculations, as well as for large-scale information processing. These advantages are achieved through the use of quantum features, such as entanglement or superposition. These capabilities can give quantum computers an advantage in terms of computational time and cost over classical computers. Nowadays, scientific challenges are impossible to perform by classical computation due to computational complexity (more bytes than atoms in the observable universe) or the time it would take (thousands of years), and quantum computation is the only known answer. However, current quantum devices do not have yet the necessary qubits and are not fault -tolerant enough to achieve these goals. Nonetheless, there are other fields like machine learning, finance, or chemistry where quantum computation could be useful with current quantum devices. This manuscript aims to present a review of the literature published between 2017 and 2023 to identify, analyze, and classify the different types of algorithms used in quantum machine learning and their applications. The methodology follows the guidelines related to Systematic Literature Review methods, such as the one proposed by Kitchenham and other authors in the software engineering field. Consequently, this study identified 94 articles that used quantum machine learning techniques and algorithms and shows their implementation using computational quantum circuits or ansatzs. The main types of found algorithms are quantum implementations of classical machine learning algorithms, such as support vector machines or the k -nearest neighbor model, and classical deep learning algorithms, like quantum neural networks. One of the most relevant applications in the machine learning field is image classification. Many articles, especially within the classification, try to solve problems currently answered by classical machine learning but using quantum devices and algorithms. Even though results are promising, quantum machine learning is far from achieving its full potential. An improvement in quantum hardware is required for this potential to be achieved since the existing quantum computers lack enough quality, speed, and scale to allow quantum computing to achieve its full potential.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] A systematic literature review of machine learning methods applied to predictive maintenance
    Carvalho, Thyago P.
    Soares, Fabrizzio A. A. M. N.
    Vita, Roberto
    Francisco, Robert da P.
    Basto, Joao P.
    Alcala, Symone G. S.
    COMPUTERS & INDUSTRIAL ENGINEERING, 2019, 137
  • [22] Software Risk Prediction: Systematic Literature Review on Machine Learning Techniques
    Mahmud, Mahmudul Hoque
    Nayan, Md Tanzirul Haque
    Ashir, Dewan Md Nur Anjum
    Kabir, Md Alamgir
    APPLIED SCIENCES-BASEL, 2022, 12 (22):
  • [23] Convergence of Gamification and Machine Learning: A Systematic Literature Review
    Khakpour, Alireza
    Colomo-Palacios, Ricardo
    TECHNOLOGY KNOWLEDGE AND LEARNING, 2021, 26 (03) : 597 - 636
  • [24] Cyberbullying detection and machine learning: a systematic literature review
    Balakrisnan, Vimala
    Kaity, Mohammed
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (SUPPL 1) : 1375 - 1416
  • [25] Cyberbullying detection and machine learning: a systematic literature review
    Vimala Balakrisnan
    Mohammed Kaity
    Artificial Intelligence Review, 2023, 56 : 1375 - 1416
  • [26] Operationalizing Machine Learning Models - A Systematic Literature Review
    Kolltveit, Ask Berstad
    Li, Jingyue
    2022 IEEE/ACM 1ST INTERNATIONAL WORKSHOP ON SOFTWARE ENGINEERING FOR RESPONSIBLE ARTIFICIAL INTELLIGENCE (SE4RAI 2022), 2022, : 1 - 8
  • [27] Data cleaning and machine learning: a systematic literature review
    Cote, Pierre-Olivier
    Nikanjam, Amin
    Ahmed, Nafisa
    Humeniuk, Dmytro
    Khomh, Foutse
    AUTOMATED SOFTWARE ENGINEERING, 2024, 31 (02)
  • [28] Identification Of Investigation Procedures To Predict Work Roll Fatigue For Developing Machine Learning Applications - A Systematic Literature Review
    Moser, Tobias
    Seitz, Johannes
    Alp, Enes
    Kuhlenkoetter, Bernd
    PROCEEDINGS OF THE CONFERENCE ON PRODUCTION SYSTEMS AND LOGISTICS, CPSL 2023-2, 2023, : 268 - 281
  • [29] Convergence of Gamification and Machine Learning: A Systematic Literature Review
    Alireza Khakpour
    Ricardo Colomo-Palacios
    Technology, Knowledge and Learning, 2021, 26 : 597 - 636
  • [30] Classification and analysis of deep learning applications in construction: A systematic literature review
    Khallaf, Rana
    Khallaf, Mohamed
    AUTOMATION IN CONSTRUCTION, 2021, 129