Systematic literature review: Quantum machine learning and its applications

被引:44
|
作者
Peral-Garcia, David [1 ]
Cruz-Benito, Juan [2 ]
Garcia-Penalvo, Francisco Jose [3 ]
机构
[1] Univ Salamanca, Fac Sci, Expert Syst & Applicat Lab ESALAB, Plaza Caidos S-N, Salamanca 37008, Spain
[2] IBM TJ Watson Res Ctr, IBM Quantum, Yorktown Hts, NY 10598 USA
[3] Univ Salamanca, Res Inst Educ Sci, Dept Comp & Automat, GRIAL Res Grp, Paseo Canalejas 169, Salamanca 37008, Spain
关键词
Quantum machine learning; Quantum computing; Systematic literature review; NEURAL-NETWORKS; MODEL;
D O I
10.1016/j.cosrev.2024.100619
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Quantum physics has changed the way we understand our environment, and one of its branches, quantum mechanics, has demonstrated accurate and consistent theoretical results. Quantum computing is the process of performing calculations using quantum mechanics. This field studies the quantum behavior of certain subatomic particles (photons, electrons, etc.) for subsequent use in performing calculations, as well as for large-scale information processing. These advantages are achieved through the use of quantum features, such as entanglement or superposition. These capabilities can give quantum computers an advantage in terms of computational time and cost over classical computers. Nowadays, scientific challenges are impossible to perform by classical computation due to computational complexity (more bytes than atoms in the observable universe) or the time it would take (thousands of years), and quantum computation is the only known answer. However, current quantum devices do not have yet the necessary qubits and are not fault -tolerant enough to achieve these goals. Nonetheless, there are other fields like machine learning, finance, or chemistry where quantum computation could be useful with current quantum devices. This manuscript aims to present a review of the literature published between 2017 and 2023 to identify, analyze, and classify the different types of algorithms used in quantum machine learning and their applications. The methodology follows the guidelines related to Systematic Literature Review methods, such as the one proposed by Kitchenham and other authors in the software engineering field. Consequently, this study identified 94 articles that used quantum machine learning techniques and algorithms and shows their implementation using computational quantum circuits or ansatzs. The main types of found algorithms are quantum implementations of classical machine learning algorithms, such as support vector machines or the k -nearest neighbor model, and classical deep learning algorithms, like quantum neural networks. One of the most relevant applications in the machine learning field is image classification. Many articles, especially within the classification, try to solve problems currently answered by classical machine learning but using quantum devices and algorithms. Even though results are promising, quantum machine learning is far from achieving its full potential. An improvement in quantum hardware is required for this potential to be achieved since the existing quantum computers lack enough quality, speed, and scale to allow quantum computing to achieve its full potential.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Applications of machine learning to BIM: A systematic literature review
    Zabin, Asem
    Gonzalez, Vicente A.
    Zou, Yang
    Amor, Robert
    ADVANCED ENGINEERING INFORMATICS, 2022, 51
  • [2] Applications of machine learning methods in port operations-A systematic literature review
    Filom, Siyavash
    Amiri, Amir M.
    Razavi, Saiedeh
    TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW, 2022, 161
  • [3] Quantum Machine Learning Applications in the Biomedical Domain: A Systematic Review
    Maheshwari, Danyal
    Garcia-Zapirain, Begonya
    Sierra-Sosa, Daniel
    IEEE ACCESS, 2022, 10 : 80463 - 80484
  • [4] Machine learning applications in production lines: A systematic literature review
    Kang, Ziqiu
    Catal, Cagatay
    Tekinerdogan, Bedir
    COMPUTERS & INDUSTRIAL ENGINEERING, 2020, 149
  • [5] Quantum Machine Learning Revolution in Healthcare: A Systematic Review of Emerging Perspectives and Applications
    Ullah, Ubaid
    Garcia-Zapirain, Begonya
    IEEE ACCESS, 2024, 12 : 11423 - 11450
  • [6] Machine Learning and Marketing: A Systematic Literature Review
    Duarte, Vannessa
    Zuniga-Jara, Sergio
    Contreras, Sergio
    IEEE ACCESS, 2022, 10 : 93273 - 93288
  • [7] Systematic literature review on quantum applications in nanotechnology
    Pacheco, A. Lopez
    Aguilar, J.
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01)
  • [8] Crop yield prediction using machine learning: A systematic literature review
    van Klompenburg, Thomas
    Kassahun, Ayalew
    Catal, Cagatay
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2020, 177
  • [9] A Systematic Literature Review of Machine Learning Applications for Port's Operations
    Mekkaoui, Sara E.
    Benabbou, Loubna
    Berrado, Abdelaziz
    GOL'20: 2020 5TH INTERNATIONAL CONFERENCE ON LOGISTICS OPERATIONS MANAGEMENT (GOL), 2020, : 28 - 32
  • [10] A Systematic Literature Review on Machine Learning in Shared Mobility
    Teusch, Julian
    Gremmel, Jan Niklas
    Koetsier, Christian
    Johora, Fatema Tuj
    Sester, Monika
    Woisetschlaeger, David M.
    Mueller, Jorg P.
    IEEE OPEN JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 4 : 870 - 899