Machine Learning Implementations for Multi-class Cardiovascular Risk Prediction in Family Health Units

被引:0
作者
Sozen, Mert Erkan [1 ]
Sariyer, Gorkem [2 ]
Sozen, Mustafa Yigit [3 ]
Badhotiya, Gaurav Kumar [4 ]
Vijavargy, Lokesh [5 ]
机构
[1] Izmir Metro Co, Izmir, Turkiye
[2] Yasar Univ, Business Adm, Izmir, Turkiye
[3] Ayvalik 2 Family Hlth Unit, Balikesir, Turkiye
[4] Indian Inst Management Ahmedabad IIMA, Operat & Decis Sci, Ahmadabad, Gujarat, India
[5] Jaipuria Inst Management Jaipur, Jaipur, Rajasthan, India
关键词
Cardiovascular diseases; Machine learning; Risk prediction; Family health units; SCORE-Turkey; ARTIFICIAL-INTELLIGENCE; PRIMARY-CARE; BIG DATA; DISEASE; VALIDATION; FRAMINGHAM; REGRESSION; DERIVATION; TURKEY; SCORE;
D O I
10.33889/IJMEMS.2023.8.6.066
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Cardiovascular disease (CVD) risk prediction plays a significant role in clinical research since it is the key to primary prevention. As family health units follow up on a specific group of patients, particularly in the middle-aged and elderly groups, CVD risk prediction has additional importance for them. In a retrospectively collected data set from a family health unit in Turkey in 2018, we evaluated the CVD risk levels of patients based on SCORE-Turkey. By identifying additional CVD risk factors for SCORE-Turkey and grouping the study patients into 3-classes "low risk," "moderate risk," and "high risk" patients, we proposed a machine learning implemented early warning system for CVD risk prediction in family health units. Body mass index, diastolic blood pressures, serum glucose, creatinine, urea, uric acid levels, and HbA1c were significant additional CVD risk factors to SCORE-Turkey. All of the five implemented algorithms, k-nearest neighbour (KNN), random forest (RF), decision tree (DT), logistic regression (LR), and support vector machines (SVM), had high prediction performances for both the K4 and K5 partitioning protocols. With 89.7% and 92.1% accuracies for K4 and K5 protocols, KNN outperformed the other algorithms. For the five ML algorithms, while for the " low risk" category, precision and recall measures varied between 95% to 100%, "moderate risk," and "high risk" categories, these measures varied between 60% to 92%. Machine learning-based algorithms can be used in CVD risk prediction by enhancing prediction performances and combining various risk factors having complex relationships.
引用
收藏
页码:1171 / 1187
页数:17
相关论文
共 50 条
  • [1] Cardiovascular risk prediction: from classical statistical methods to machine learning approaches
    Sperti, Michela
    Malavolta, Marta
    Polacco, Federica Staunovo
    Dellavalle, Annalisa
    Ruggieri, Rossella
    Bergia, Sara
    Fazio, Alice
    Santoro, Carmine
    Deriu, Marco A.
    MINERVA CARDIOLOGY AND ANGIOLOGY, 2022, 70 (01) : 102 - 122
  • [2] Transforming Cardiovascular Risk Prediction: A Review of Machine Learning and Artificial Intelligence Innovations
    Kasartzian, Dimitrios-Ioannis
    Tsiampalis, Thomas
    LIFE-BASEL, 2025, 15 (01):
  • [3] Machine learning to predict cardiovascular risk
    Quesada, Jose A.
    Lopez-Pineda, Adriana
    Gil-Guillen, Vicente F.
    Durazo-Arvizu, Ramon
    Orozco-Beltran, Domingo
    Lopez-Domenech, Angela
    Carratala-Munuera, Concepcion
    INTERNATIONAL JOURNAL OF CLINICAL PRACTICE, 2019, 73 (10)
  • [4] Machine learning in precision diabetes care and cardiovascular risk prediction
    Oikonomou, Evangelos K.
    Khera, Rohan
    CARDIOVASCULAR DIABETOLOGY, 2023, 22 (01)
  • [5] Integrated Multi-Class Classification and Prediction of GPCR Allosteric Modulators by Machine Learning Intelligence
    Hou, Tianling
    Bian, Yuemin
    McGuire, Terence
    Xie, Xiang-Qun
    BIOMOLECULES, 2021, 11 (06)
  • [6] Cardiovascular Risk Prediction in Ankylosing Spondylitis: From Traditional Scores to Machine Learning Assessment
    Navarini, Luca
    Caso, Francesco
    Costa, Luisa
    Currado, Damiano
    Stola, Liliana
    Perrotta, Fabio
    Delfino, Lorenzo
    Sperti, Michela
    Deriu, Marco A.
    Ruscitti, Piero
    Pavlych, Viktoriya
    Corrado, Addolorata
    Di Benedetto, Giacomo
    Tasso, Marco
    Ciccozzi, Massimo
    Laudisio, Alice
    Lunardi, Claudio
    Cantatore, Francesco Paolo
    Lubrano, Ennio
    Giacomelli, Roberto
    Scarpa, Raffaele
    Afeltra, Antonella
    RHEUMATOLOGY AND THERAPY, 2020, 7 (04) : 867 - 882
  • [7] Early prediction of cardiovascular disease using machine learning: Unveiling risk factors from health records
    Deepa, Dr. R.
    Sadu, Vijaya Bhaskar
    Prashant, G. C.
    Sivasamy, A.
    AIP ADVANCES, 2024, 14 (03)
  • [8] Cardiovascular complications in a diabetes prediction model using machine learning: a systematic review
    Kee, Ooi Ting
    Harun, Harmiza
    Mustafa, Norlaila
    Murad, Nor Azian Abdul
    Chin, Siok Fong
    Jaafar, Rosmina
    Abdullah, Noraidatulakma
    CARDIOVASCULAR DIABETOLOGY, 2023, 22 (01)
  • [9] Using machine learning-based algorithms to construct cardiovascular risk prediction models for Taiwanese adults based on traditional and novel risk factors
    Cheng, Chien-Hsiang
    Lee, Bor-Jen
    Nfor, Oswald Ndi
    Hsiao, Chih-Hsuan
    Huang, Yi-Chia
    Liaw, Yung-Po
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2024, 24 (01)
  • [10] Risk prediction with machine learning and regression methods
    Steyerberg, Ewout W.
    van der Ploeg, Tjeerd
    Van Calster, Ben
    BIOMETRICAL JOURNAL, 2014, 56 (04) : 601 - 606