On the asymptotics of eigenvalues for a Sturm-Liouville problem with symmetric single-well potential

被引:1
作者
Baskaya, Elif [1 ]
机构
[1] Karadeniz Tech Univ, Dept Math, Karadeniz, Turkiye
关键词
Sturm-Liouville problem; symmetric single-well potential; eigenvalue parameter in the boundary condition; asymptotic expansions; DIMENSIONAL SCHRODINGER-OPERATORS; 1ST; 2; EIGENVALUES; HILLS EQUATION; PARAMETER; EIGENFUNCTIONS; GAP;
D O I
10.1515/dema-2023-0129
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, Sturm-Liouville problem with one boundary condition including an eigenparameter is considered, and the asymptotic expansion of its eigenparameter is calculated. The problem also has a symmetric single-well potential, which is an important function in quantum mechanics.
引用
收藏
页数:10
相关论文
共 20 条
[11]  
Haaser N.B., 1991, REAL ANAL
[13]   On the first two eigenvalues of Sturm-Liouville operators [J].
Horváth, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (04) :1215-1224
[14]   The eigenvalue gap for one-dimensional Schrodinger operators with symmetric potentials [J].
Huang, Min-Jei ;
Tsai, Tzong-Mo .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2009, 139 :359-366
[16]   Eigenfunction and Green's Function Asymptotics for Hill's Equation with Symmetric Single-Well Potential [J].
Kabatas, A. .
UKRAINIAN MATHEMATICAL JOURNAL, 2022, 74 (02) :218-231
[17]   ONE BOUNDARY VALUE PROBLEM INCLUDING A SPECTRAL PARAMETER IN ALL BOUNDARY CONDITIONS [J].
Kabatas, Ayse .
OPUSCULA MATHEMATICA, 2023, 43 (05) :651-661
[18]   ON EIGENFUNCTIONS OF HILL?S EQUATION WITH SYMMETRIC DOUBLE WELL POTENTIAL [J].
Kabatas, Ayse .
COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2022, 71 (03) :634-649
[19]   Dynamics of a hydrogen-bonded linear chain with a new type of one-particle potential [J].
Konwent, H ;
Machnikowski, P ;
Radosz, A .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1996, 8 (23) :4325-4338
[20]   REGULAR EIGENVALUE PROBLEMS WITH EIGENVALUE PARAMETER IN BOUNDARY-CONDITION [J].
WALTER, J .
MATHEMATISCHE ZEITSCHRIFT, 1973, 133 (04) :301-312