On the asymptotics of eigenvalues for a Sturm-Liouville problem with symmetric single-well potential

被引:1
作者
Baskaya, Elif [1 ]
机构
[1] Karadeniz Tech Univ, Dept Math, Karadeniz, Turkiye
关键词
Sturm-Liouville problem; symmetric single-well potential; eigenvalue parameter in the boundary condition; asymptotic expansions; DIMENSIONAL SCHRODINGER-OPERATORS; 1ST; 2; EIGENVALUES; HILLS EQUATION; PARAMETER; EIGENFUNCTIONS; GAP;
D O I
10.1515/dema-2023-0129
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, Sturm-Liouville problem with one boundary condition including an eigenparameter is considered, and the asymptotic expansion of its eigenparameter is calculated. The problem also has a symmetric single-well potential, which is an important function in quantum mechanics.
引用
收藏
页数:10
相关论文
共 20 条
[1]   Solving inverse nodal problem with spectral parameter in boundary conditions [J].
Akbarpoor, Sh. ;
Koyunbakan, H. ;
Dabbaghian, A. .
INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2019, 27 (12) :1790-1801
[2]   OPTIMAL LOWER BOUND FOR THE GAP BETWEEN THE 1ST 2 EIGENVALUES OF ONE-DIMENSIONAL SCHRODINGER-OPERATORS WITH SYMMETRIC SINGLE-WELL POTENTIALS [J].
ASHBAUGH, MS ;
BENGURIA, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 105 (02) :419-424
[3]   Comparison Theorems for the Eigenvalue Gap of Schrodinger Operators on the Real Line [J].
Chen, Duo-Yuan ;
Huang, Min-Jei .
ANNALES HENRI POINCARE, 2012, 13 (01) :85-101
[4]   INSTABILITY INTERVALS FOR HILL'S EQUATION WITH SYMMETRIC SINGLE-WELL POTENTIAL [J].
Coskun, H. ;
Baskaya, E. ;
Kabatas, A. .
UKRAINIAN MATHEMATICAL JOURNAL, 2019, 71 (06) :977-983
[5]   Asymptotics of eigenvalues for regular Sturm-Liouville problems with eigenvalue parameter in the boundary condition [J].
Coskun, H ;
Bayram, N .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 306 (02) :548-566
[6]  
Coskun H., 2016, Turk. J. Math. Comput. Sci., V4, P1
[7]   On Green's function for boundary value problem with eigenvalue dependent quadratic boundary condition [J].
Coskun, Haskiz ;
Kabatas, Ayse ;
Baskaya, Elif .
BOUNDARY VALUE PROBLEMS, 2017,
[8]  
Coskun H, 2013, MATH SCAND, V113, P143
[9]  
FULTON CT, 1980, P ROY SOC EDINB A, V87, P1
[10]   2-POINT BOUNDARY-VALUE PROBLEMS WITH EIGENVALUE PARAMETER CONTAINED IN BOUNDARY-CONDITIONS [J].
FULTON, CT .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1977, 77 :293-308