Exploring ququart computation on a transmon using optimal control

被引:4
|
作者
Seifert, Lennart Maximilian [1 ]
Li, Ziqian [2 ,3 ,4 ]
Roy, Tanay [2 ,3 ]
Schuster, David I. [2 ,3 ,4 ,5 ]
Chong, Frederic T. [1 ]
Baker, Jonathan M. [1 ,6 ]
机构
[1] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
[2] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
[3] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[4] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[5] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[6] Duke Univ, Duke Quantum Ctr, Durham, NC 27701 USA
基金
美国国家科学基金会;
关键词
DYNAMICS;
D O I
10.1103/PhysRevA.108.062609
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Contemporary quantum computers encode and process quantum information in binary qubits (d = 2). However, many architectures include higher energy levels that are left as unused computational resources. We demonstrate a superconducting ququart (d = 4) processor and combine quantum optimal control with efficient gate decompositions to implement high-fidelity ququart gates. We distinguish between viewing the ququart as a generalized four-level qubit and an encoded pair of qubits, and characterize the resulting gates in each case. In randomized benchmarking experiments we observe gate fidelities 95% and identify coherence as the primary limiting factor. Our results validate ququarts as a viable tool for quantum information processing.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Optimal control of quantum permutation algorithm with a molecular ququart
    Hu, Jie-Ru
    Zhang, Zuo-Yuan
    Liu, Jin-Ming
    Boninsegni, Massimo
    OPTICS EXPRESS, 2024, 32 (22): : 39804 - 39817
  • [2] Reach set computation using optimal control
    Varaiya, P
    VERIFICATION OF DIGITAL AND HYBRID SYSTEM, 2000, 170 : 323 - 331
  • [3] Robust optimal control for a systematic error in the control amplitude of transmon qubits
    Cykiert, Max
    Ginossar, Eran
    PHYSICA SCRIPTA, 2024, 99 (10)
  • [4] Optimal Protocol for Polarization Ququart State Tomography
    Moreva, E. V.
    Bogdanov, Yu. I.
    Gavrichenko, A. K.
    Tikhonov, I. V.
    Kulik, S. P.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2009, 3 (01): : 1 - 12
  • [5] COMPUTATION OF OPTIMAL CONTROL OF LINEAR SYSTEMS USING HAAR WAVELETS
    Biswas, Saroj
    Dong, Qing
    Bai, Li
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2012, 8 (5B): : 3819 - 3831
  • [6] Computation of Time Optimal Feedback Control Using Groebner Basis
    Patil, Deepak U.
    Chakraborty, Debraj
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (08) : 2271 - 2276
  • [7] COMPUTATION OF CHEBYCHEFF OPTIMAL CONTROL
    MICHAEL, GJ
    AIAA JOURNAL, 1971, 9 (05) : 973 - &
  • [8] A NOTE ON COMPUTATION OF OPTIMAL CONTROL
    DYER, P
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1967, AC12 (03) : 329 - +
  • [9] NUMERICAL COMPUTATION OF OPTIMAL CONTROL
    NOTON, ARM
    DYER, P
    MARKLAND, CA
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1967, AC12 (01) : 59 - +
  • [10] COMPUTATION OF OPTIMAL SINGULAR CONTROL
    ALY, GM
    INTERNATIONAL JOURNAL OF CONTROL, 1978, 28 (05) : 681 - 688