Microstructure of Alkali-Activated Slag in Ultralow Temperature Environments

被引:2
|
作者
Liu, Leping [1 ]
Hong, Yao [1 ]
Xu, Yue [1 ]
Li, Yuanyuan [1 ]
He, Yan [2 ,3 ]
机构
[1] Nanning Normal Univ, Coll Chem & Mat, Guangxi Key Lab Nat Polymer Chem & Phys, 175 Mingxiudong Rd, Nanning 530001, Guangxi, Peoples R China
[2] Guangxi Univ, Sch Chem & Chem Engn, 100 Daxuedong Rd, Nanning 530004, Guangxi, Peoples R China
[3] Guangxi Univ, Guangxi Key Lab Petrochem Resource Proc & Proc Int, 100 Daxuedong Rd, Nanning 530004, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Alkali-activated slag (AAS) material; Alkali activators; Freeze-thaw cycling; Microstructure; C-S-H; BLAST-FURNACE SLAG; FLY-ASH; PHASE EVOLUTION; HYDRATION PRODUCTS; PART I; CEMENT; GEOPOLYMERS; DURABILITY; SHRINKAGE;
D O I
10.1061/JMCEE7.MTENG-16493
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this study, the changes in the phase and microstructure of alkali-activated slag (AAS) in ultralow-temperature environments (-170 degrees C) was experimentally studied by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermal gravimetric (TG), scanning electron microscopy energy dispersive X-ray spectroscopy (SEM-EDS), Si29 magic-angle spinning nuclear magnetic resonance (MAS NMR), and pore structure. The results show that as the modulus of water glass increased, the mass loss of AAS after the ultralow-temperature freeze-thaw cycles (ULT-FTC) decreased, the freeze-thaw resistance increased. The ULT-FTC caused the internal structure of the AAS samples using different activators to slip and rearrange. Partial calcium-(alumina)-silicate-hydrate gel [C (A) S H] gel was decalcified. The gel structure formed using 2.0 M water glass as the activator was the most stable. The dense structure with a lower Ca/Si ratio enables the AAS to maintain a relatively stable microstructure after undergoing ULT-FTC.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Effect of calcium oxide on mechanical properties and microstructure of alkali-activated slag composites at sub-zero temperature
    Ju, Cheng
    Liu, Yushi
    Jia, Minjie
    Yu, Kunyang
    Yu, Zhenyun
    Yang, Yingzi
    Journal of Building Engineering, 2020, 32
  • [42] Effect of calcium oxide on mechanical properties and microstructure of alkali-activated slag composites at sub-zero temperature
    Ju, Cheng
    Liu, Yushi
    Jia, Minjie
    Yu, Kunyang
    Yu, Zhenyun
    Yang, Yingzi
    JOURNAL OF BUILDING ENGINEERING, 2020, 32
  • [43] Compressive Strength and Microstructure Properties of Alkali-Activated Systems with Blast Furnace Slag, Desulfurization Slag, and Gypsum
    Cho, Bong-Suk
    Koo, Kyung-Mo
    Choi, Se-Jin
    ADVANCES IN CIVIL ENGINEERING, 2018, 2018
  • [44] Effects of different activators on workability, mechanical properties and microstructure of alkali-activated slag-copper slag
    Kong, Fanhui
    Xu, Rongsheng
    Wang, Aiguo
    Hong, Tong
    Shi, Xianzeng
    CONSTRUCTION AND BUILDING MATERIALS, 2025, 463
  • [45] Resistance to Chlorides of the Alkali-Activated Slag Concrete
    Roa-Rodriguez, G.
    Aperador, W.
    Delgado, A.
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2014, 9 (01): : 282 - 291
  • [46] Properties and durability of alkali-activated ladle slag
    Elijah Adesanya
    Katja Ohenoja
    Paivo Kinnunen
    Mirja Illikainen
    Materials and Structures, 2017, 50
  • [47] Alternative concrete based on alkali-activated slag
    Rodriguez, E.
    Bernal, S.
    Mejia de Gutierrez, R.
    Puertas, F.
    MATERIALES DE CONSTRUCCION, 2008, 58 (291) : 53 - 67
  • [48] Corrosion resistance of alkali-activated slag cement
    Shi, C
    ADVANCES IN CEMENT RESEARCH, 2003, 15 (02) : 77 - 81
  • [49] NANO-TiO2 MODIFIED ALKALI-ACTIVATED STEEL SLAG - SLAG MATERIALS: HYDRATION AND MICROSTRUCTURE
    Du, Peng
    Wang, Jinbang
    Li, Chao
    Zhou, Zonghui
    Cheng, Xin
    CERAMICS-SILIKATY, 2024, 68 (03) : 438 - 443
  • [50] Alkali-activated metallurgical slag as a sustainable adsorbent
    Amerkhanova, Sh. K.
    Uali, A. S.
    Shlyapov, R. M.
    Belgibayeva, D. S.
    BULLETIN OF THE UNIVERSITY OF KARAGANDA-CHEMISTRY, 2021, (104): : 117 - 127