Microstructure of Alkali-Activated Slag in Ultralow Temperature Environments

被引:2
作者
Liu, Leping [1 ]
Hong, Yao [1 ]
Xu, Yue [1 ]
Li, Yuanyuan [1 ]
He, Yan [2 ,3 ]
机构
[1] Nanning Normal Univ, Coll Chem & Mat, Guangxi Key Lab Nat Polymer Chem & Phys, 175 Mingxiudong Rd, Nanning 530001, Guangxi, Peoples R China
[2] Guangxi Univ, Sch Chem & Chem Engn, 100 Daxuedong Rd, Nanning 530004, Guangxi, Peoples R China
[3] Guangxi Univ, Guangxi Key Lab Petrochem Resource Proc & Proc Int, 100 Daxuedong Rd, Nanning 530004, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Alkali-activated slag (AAS) material; Alkali activators; Freeze-thaw cycling; Microstructure; C-S-H; BLAST-FURNACE SLAG; FLY-ASH; PHASE EVOLUTION; HYDRATION PRODUCTS; PART I; CEMENT; GEOPOLYMERS; DURABILITY; SHRINKAGE;
D O I
10.1061/JMCEE7.MTENG-16493
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this study, the changes in the phase and microstructure of alkali-activated slag (AAS) in ultralow-temperature environments (-170 degrees C) was experimentally studied by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermal gravimetric (TG), scanning electron microscopy energy dispersive X-ray spectroscopy (SEM-EDS), Si29 magic-angle spinning nuclear magnetic resonance (MAS NMR), and pore structure. The results show that as the modulus of water glass increased, the mass loss of AAS after the ultralow-temperature freeze-thaw cycles (ULT-FTC) decreased, the freeze-thaw resistance increased. The ULT-FTC caused the internal structure of the AAS samples using different activators to slip and rearrange. Partial calcium-(alumina)-silicate-hydrate gel [C (A) S H] gel was decalcified. The gel structure formed using 2.0 M water glass as the activator was the most stable. The dense structure with a lower Ca/Si ratio enables the AAS to maintain a relatively stable microstructure after undergoing ULT-FTC.
引用
收藏
页数:11
相关论文
共 56 条
  • [1] The use of thermal analysis in assessing the effect of temperature on a cement paste
    Alarcon-Ruiz, L
    Platret, G
    Massieu, E
    Ehrlacher, A
    [J]. CEMENT AND CONCRETE RESEARCH, 2005, 35 (03) : 609 - 613
  • [2] A review on emission analysis in cement industries
    Ali, M. B.
    Saidur, R.
    Hossain, M. S.
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (05) : 2252 - 2261
  • [3] Characterisation of mechanical and thermal properties in flax fabric reinforced geopolymer composites
    Assaedi, Hasan
    Alomayri, Thamer
    Shaikh, Faiz U. A.
    Low, It-Meng
    [J]. JOURNAL OF ADVANCED CERAMICS, 2015, 4 (04) : 272 - 281
  • [4] ASTM, 2015, ASTM/C666/C666M-5
  • [5] Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar
    Atis, Cengiz Duran
    Bilim, Cahit
    Celik, Oezlem
    Karahan, Okan
    [J]. CONSTRUCTION AND BUILDING MATERIALS, 2009, 23 (01) : 548 - 555
  • [6] Effect of admixtures on properties of alkali-activated slag concrete
    Bakharev, T
    Sanjayan, JG
    Cheng, YB
    [J]. CEMENT AND CONCRETE RESEARCH, 2000, 30 (09) : 1367 - 1374
  • [7] Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag - Part II: Effect of Al2O3
    Ben Haha, M.
    Lothenbach, B.
    Le Saout, G.
    Winnefeld, F.
    [J]. CEMENT AND CONCRETE RESEARCH, 2012, 42 (01) : 74 - 83
  • [8] Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag - Part I: Effect of MgO
    Ben Haha, M.
    Lothenbach, B.
    Le Saout, G.
    Winnefeld, F.
    [J]. CEMENT AND CONCRETE RESEARCH, 2011, 41 (09) : 955 - 963
  • [9] Engineering of lunar bases
    Benaroya, Haym
    Bemold, Leonhard
    [J]. ACTA ASTRONAUTICA, 2008, 62 (4-5) : 277 - 299
  • [10] MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders
    Bernal, Susan A.
    Nicolas, Rackel San
    Myers, Rupert J.
    Mejia de Gutierrez, Ruby
    Puertas, Francisca
    van Deventer, Jannie S. J.
    Provis, John L.
    [J]. CEMENT AND CONCRETE RESEARCH, 2014, 57 : 33 - 43